【題目】如圖,,
是通過某城市開發(fā)區(qū)中心O的兩條南北和東西走向的街道,鏈接M,N兩地之間的鐵路是圓心在
上的一段圓弧,若點M在O正北方向,且
,點N到
,
距離分別為4km和5km.
建立適當(dāng)?shù)淖鴺?biāo)系,求鐵路線所在圓弧的方程;
若該城市的某中學(xué)擬在O點正東方向選址建分校,考慮環(huán)境問題,要求校址到點O的距離大于4km,并且鐵路線上任意一點到校址的距離不能少于
,求該校址距離點O的最近距離.
注:校址視為一個點
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)在定義域
上的導(dǎo)函數(shù)為
,若函數(shù)
沒有零點,且
,當(dāng)
在
上與
在
上的單調(diào)性相同時,則實數(shù)
的取值范圍是( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】圖1是由矩形和菱形
組成的一個平面圖形,其中
,
,將其沿
折起使得
與
重合,連結(jié)
,如圖2.
(1)證明圖2中的四點共面,且平面
平面
;
(2)求圖2中的四邊形的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓:
,圓
與圓
關(guān)于直線
:
對稱.
(1)求圓的方程;
(2)過直線上的點
分別作斜率為
,4的兩條直線
,
,使得
被圓
截得的弦長與
被圓
截得的弦長相等.
(i)求點的坐標(biāo);
(ii)過點任作兩條互相垂直的直線分別與兩圓相交,判斷所得弦長是否恒相等,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某賽季,甲、乙兩名籃球運(yùn)動員都參加了場比賽,他們所有比賽得分的情況如下:
甲:;
乙: .
(1)求甲、乙兩名運(yùn)動員得分的中位數(shù).
(2)分別求甲、乙兩名運(yùn)動員得分的平均數(shù)、方差,你認(rèn)為哪位運(yùn)動員的成績更穩(wěn)定?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)集合,
,分別從集合
和
中隨機(jī)取一個元素
與
.記“點
落在直線
上”為事件
,若事件
的概率最大,則
的取值可能是( )
A.B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】任意實數(shù),
,定義
,設(shè)函數(shù)
,數(shù)列
是公比大于0的等比數(shù)列,且
,
,則
____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
且
.
(1)當(dāng)時,求曲線
在點
處的切線方程;
(2)當(dāng)時,求證:
;
(3)討論函數(shù)的極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]
在直角坐標(biāo)系中,曲線
:
(
,
為參數(shù)).在以坐標(biāo)原點為極點,
軸的正半軸為極軸的極坐標(biāo)系中,曲線
:
.
(1)說明是哪一種曲線,并將
的方程化為極坐標(biāo)方程;
(2)若直線的方程為
,設(shè)
與
的交點為
,
,
與
的交點為
,
,若
的面積為
,求
的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com