【題目】已知函數f(x)= ﹣ax+b,在點M(1,f(1))處的切線方程為9x+3y﹣10=0,求
(1)實數a,b的值;
(2)函數f(x)的單調區間以及在區間[0,3]上的最值.
【答案】
(1)解:因為在點M(1,f(1))處的切線方程為9x+3y﹣10=0,
所以切線斜率是k=﹣3
且9×1+3f(1)﹣10=0,
求得 ,即點
又函數 ,則f′(x)=x2﹣a
所以依題意得
解得
(2)解:由(1)知
所以f′(x)=x2﹣4=(x+2)(x﹣2)
令f′(x)=0,解得x=2或x=﹣2
當f′(x)>0x>2或x<﹣2;當f′(x)<0﹣2<x<2
所以函數f(x)的單調遞增區間是(﹣∞,2),(2,+∞)
單調遞減區間是(﹣2,2)
又x∈[0,3]
所以當x變化時,f(x)和f′(x)變化情況如下表:
X | 0 | (0,2) | 2 | (2,3) | 3 |
f′(x) | ﹣ | 0 | + | 0 | |
f(x) | 4 | ↘ | 極小值 | ↗ | 1 |
所以當x∈[0,3]時,f(x)max=f(0)=4,
【解析】(1)求出曲線的斜率,切點坐標,求出函數的導數,利用導函數值域斜率的關系,即可求出a,b.(2)求出導函數的符號,判斷函數的單調性以及求解閉區間的函數的最值.
【考點精析】利用利用導數研究函數的單調性和函數的最大(小)值與導數對題目進行判斷即可得到答案,需要熟知一般的,函數的單調性與其導數的正負有如下關系: 在某個區間內,(1)如果
,那么函數
在這個區間單調遞增;(2)如果
,那么函數
在這個區間單調遞減;求函數
在
上的最大值與最小值的步驟:(1)求函數
在
內的極值;(2)將函數
的各極值與端點處的函數值
,
比較,其中最大的是一個最大值,最小的是最小值.
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=loga(1+x),g(x)=loga(1﹣x),其中(a>0且a≠1),設h(x)=f(x)﹣g(x).
(1)求h(x)的定義域;
(2)判斷h(x)的奇偶性,并說明理由;
(3)若a=log327+log2,求使f(x)>1成立的x的集合.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知f(x)是定義在[﹣1,1]上的奇函數,且f(1)=1,若對任意m,n∈[﹣1,1],m+n≠0,都有 .
(1)用定義證明函數f(x)在定義域上是增函數;
(2)若 ,求實數a的取值范圍;
(3)若不等式f(x)≤(1﹣2a)t+2對所有和x∈[﹣1,1],a∈[﹣1,1]都恒成立,求實數t的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】圓O1和圓O2的極坐標方程分別為ρ=4cosθ,ρ=-4sinθ
(1)把圓O1和圓O2的極坐標方程化為直角坐標方程;
(2)求經過圓O1、圓O2交點的直線的直角坐標方程
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點在圓
上,
的坐標分別為
,
,線段
的垂直平分線交線段
于點
(1)求點的軌跡
的方程;
(2)設圓與點
的軌跡
交于不同的四個點
,求四邊形
的面積的最大值及相應的四個點的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某產品的三個質量指標分別為x,y,z,用綜合指標S=x+y+z評價該產品的等級.若S≤4,則該產品為一等品.現從一批該產品中,隨機抽取10件產品作為樣本,其質量指標列表如下:
產品編號 | A1 | A2 | A3 | A4 | A5 |
質量指標 | (1,1,2) | (2,1,1) | (2,2,2) | (1,1,1) | (1,2,1) |
產品編號 | A6 | A7 | A8 | A9 | A10 |
質量指標 | (1,2,2) | (2,1,1) | (2,2,1) | (1,1,1) | (2,1,2) |
(1)利用上表提供的樣本數據估計該批產品的一等品率.
(2)在該樣品的一等品中,隨機抽取2件產品, ①用產品編號列出所有可能的結果;
②設事件B為“在取出的2件產品中,每件產品的綜合指標S都等于4”,求事件B發生的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若函數y=f(x)的定義域是[0,4],則函數g(x)= 的定義域是( )
A.[0,2]
B.[0,2)
C.[0,1)∪(1,2]
D.[0,4]
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】一列火車從重慶駛往北京,沿途有n個車站(包括起點站重慶和終點站北京).車上有一郵政車廂,每停靠一站便要卸下火車已經過的各站發往該站的郵袋各1個,同時又要裝上該站發往以后各站的郵袋各1個,設從第k站出發時,郵政車廂內共有郵袋ak個(k=1,2,…,n).
(1)求數列{ak}的通項公式;
(2)當k為何值時,ak的值最大,求出ak的最大值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com