日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
已知函數f(x)=(x-a)lnx,(a≥0).
(1)當a=0時,若直線y=2x+m與函數y=f(x)的圖象相切,求m的值;
(2)若f(x)在[1,2]上是單調減函數,求a的最小值;
(3)當x∈[1,2e]時,|f(x)|≤e恒成立,求實數a的取值范圍.(e為自然對數的底).
(1)當a=0時,f(x)=xlnx,∴f′(x)=lnx+1
∵直線y=2x+m與函數y=f(x)的圖象相切,∴lnx+1=2,∴x=e
∵f(e)=e,∴切點為(e,e),∴m=-e;
(2)f′(x)=lnx+1-
a
x

∵f(x)在[1,2]上是單調減函數,
f′(x)=lnx+1-
a
x
≤0在[1,2]上恒成立
∴a≥xlnx+x在[1,2]上恒成立
令g(x)=xlnx+x,則g′(x)=lnx+2>0
∴g(x)=xlnx+x在[1,2]上單調遞增
∴a≥≥g(2)=2ln2+2
∴a的最小值為2ln2+2;
(3)|f(x)|≤e等價于-e≤(x-a)lnx≤e
∴-
e
lnx
≤x-a≤
e
lnx

∴x-
e
lnx
≤a≤x+
e
lnx

設h(x)=x+
e
lnx
,t(x)=x-
e
lnx
,則t(x)max≤a≤h(x)min
h′(x)=
xln2x-e
xln2x
,∵h′(e)=0
令s(x)=xln2x-e,x∈[1,2e],則s′(x)=ln2x+lnx>0
∴h(x)在[1,2e]上單調遞增,∴h(x)min=h(e)=2e,
∵t′(x)=1+
e
xln2x
>0,∴t(x)在[1,2e]上單調遞增,
∴t(x)max=t(2e)=2e-
e
ln2e

綜上,2e-
e
ln2e
≤a≤2e.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函數f(x)的最小正周期;
(2)若函數y=f(2x+
π
4
)
的圖象關于直線x=
π
6
對稱,求φ的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)為定義在R上的奇函數,且當x>0時,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,時f(x)的表達式;
(2)若關于x的方程f(x)-a=o有解,求實數a的范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=aInx-ax,(a∈R)
(1)求f(x)的單調遞增區間;(文科可參考公式:(Inx)=
1
x

(2)若f′(2)=1,記函數g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在區間(1,3)上總不單調,求實數m的范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=x2-bx的圖象在點A(1,f(1))處的切線l與直線3x-y+2=0平行,若數列{
1
f(n)
}
的前n項和為Sn,則S2010的值為(  )
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)是定義在區間(-1,1)上的奇函數,且對于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,則實數a的取值范圍是
 

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 国产一区二区三区精品久久久 | 麻豆精品国产传媒 | 久草在线在线精品观看 | 国产精品多久久久久久情趣酒店 | 午夜电影网站 | 久久久久亚洲 | 国产成人一区二区三区 | 久久久久久亚洲 | 黄色片com | 精品无码久久久久久国产 | 免费福利小视频 | 国产精品亲子伦av一区二区三区 | 九色91视频 | 久草视频新 | 日韩一区二区三区av | 欧美精品久久久久久久 | 欧美日韩综合一区 | 久久国产精品免费一区二区三区 | 91精品国产乱码久 | 爱福利视频 | 91九色在线观看 | 欧美亚洲一 | 成人a在线| 凹凸日日摸日日碰夜夜爽孕妇 | 国产精品精品视频一区二区三区 | 第一色站 | 超碰在线播 | 精品一区免费 | 日韩在线三级 | 2020av视频| 久久天堂 | 亚洲一区二区三区视频 | 欧美精品久久久 | 噜噜噜在线 | 日本一区二区三区四区视频 | 成人免费看黄 | 日韩第一区 | 三级成人在线 | 国产精品久久久久久久久久久久久 | 国产精品久久久久一区二区三区共 | www.av在线|