【題目】甲、乙兩位射擊運動員,在某天訓練中已各射擊10次,每次命中的環數如下:
甲 7 8 7 9 5 4 9 10 7 4
乙 9 5 7 8 7 6 8 6 7 7
(Ⅰ)通過計算估計,甲、乙二人的射擊成績誰更穩;
(Ⅱ)若規定命中8環及以上環數為優秀,請依據上述數據估計,在第11次射擊時,甲、乙人分別獲得優秀的概率.
科目:高中數學 來源: 題型:
【題目】已知某中學聯盟舉行了一次“盟校質量調研考試”活動,為了解本次考試學生的某學科成績情況,從中抽取部分學生的分數(滿分為分,得分取正整數,抽取學生的分數均在
之內)作為樣本(樣本容量為
)進行統計,按照
的分組作出頻率分布直方圖,并作出樣本分數的莖葉圖(莖葉圖中僅列出了得分在
的數據)
(Ⅰ)求樣本容量和頻率分布直方圖中的
的值;
(Ⅱ)在選取的樣本中,從成績在分以上(含
分)的學生中隨機抽取
名學生參加“省級學科基礎知識競賽”,求所抽取的
名學生中恰有一人得分在
內的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】小明準備利用暑假時間去旅游,媽媽為小明提供四個景點,九寨溝、泰山、長白山、武夷山.小明決定用所學的數學知識制定一個方案來決定去哪個景點:(如圖)曲線和直線
交于點
.以
為起點,再從曲線
上任取兩個點分別為終點得到兩個向量,記這兩個向量的數量積為
.若
去九寨溝;若
去泰山;若
去長白山;
去武夷山.
(1)若從這六個點中任取兩個點分別為終點得到兩個向量,分別求小明去九寨溝的概率和不去泰山的概率;
(2)按上述方案,小明在曲線上取點
作為向量的終點,則小明決定去武夷山.點
在曲線
上運動,若點
的坐標為
,求
的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在人群流量較大的街道,有一中年人吆喝“送錢”,只見他手拿一黑色小布袋,袋中有3只黃色、3只白色的乒乓球(其體積、質地完成相同),旁邊立著一塊小黑板寫道:
摸球方法:從袋中隨機摸出3個球,若摸得同一顏色的3個球,攤主送給摸球者5元錢;若摸得非同一顏色的3個球,摸球者付給攤主1元錢.
(1)摸出的3個球為白球的概率是多少?
(2)摸出的3個球為2個黃球1個白球的概率是多少?
(3)假定一天中有100人次摸獎,試從概率的角度估算一下這個攤主一個月(按30天計)能賺多少錢?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】20名同學參加某次數學考試成績(單位:分)的頻率分布直方圖如下:
(Ⅰ)求頻率分布直方圖中的值;
(Ⅱ)分別求出成績落在,
中的學生人數;
(Ⅲ)從成績在的學生中任選2人,求此2人的成績都在
中的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
已知曲線的極坐標方程是
,以極點為平面直角坐標系的原點,極軸為
軸的正半軸,建立平面直角坐標系,直線
的參數方程是
(
為參數).
(1)求曲線的直角坐標方程和直線
的的普通方程;
(2)設點,若直線
與曲線
交于
兩點,且
,求實數
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數.
(1)當時,
在
上恒成立,求實數
的取值范圍;
(2)當時,若函數
在
上恰有兩個不同的零點,求實數
的取值范圍;
(3)是否存在常數,使函數
和函數
在公共定義域上具有相同的單調性?若存在,求出
的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】甲、乙兩人參加某種選拔測試,在備選的10道題中,甲答對其中每道題的概率都是,乙能答對其中的5道題.規定每次考試都從備選的10道題中隨機抽出3道題進行測試,答對一題加10分,答錯一題(不答視為答錯)減5分,至少得15分才能入選.
(I)求乙得分的分布列和數學期望;
(II)求甲、乙兩人中至少有一人入選的概率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com