日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

已知對任意m∈R,直線x+y+m=0都不是f(x)=x3-3ax(a∈R)的切線.
(I)求a的取值范圍;
(II)求證在x∈[-1,1]上至少存在一個x,使得成立.
【答案】分析:(I)求出f(x)導(dǎo)函數(shù)的值域,由直線x+y+m=0都不是f(x)=x3-3ax的切線得到-1不屬于導(dǎo)函數(shù)的值域,得到關(guān)于a的不等式,求出解集得到a的取值范圍即可;
(II)要證的問題等價于當(dāng)x∈[-1,1]時,,設(shè)g(x)=|f(x)|,g(x)在x∈[-1,1]上是偶函數(shù),故只要證明當(dāng)x∈[0,1]時,,分a小于等于0和a大于0小于兩種情況,討論f'(x)的正負(fù)化簡絕對值并得到函數(shù)的增減區(qū)間,根據(jù)函數(shù)的增減性分別求出|f(x)|的最小值比大得證.
解答:解:(I)f'(x)=3x2-3a∈[-3a,+∞),
∵對任意m∈R,直線x+y+m=0都不是y=f(x)的切線,
∴-1∉[-3a,+∞),-1<-3a,實數(shù)a的取值范圍是
(II)證明:在x∈[-1,1]上至少存在一個x,使得成立等價于當(dāng)x∈[-1,1]時,
設(shè)g(x)=|f(x)|,g(x)在x∈[-1,1]上是偶函數(shù),故只要證明當(dāng)x∈[0,1]時,
①當(dāng)a≤0時,f'(x)≥0,f(x)在[0,1]上單調(diào)遞增且f(0)=0,g(x)=f(x),
②當(dāng),列表:

f(x)在上遞減,在上遞增,

時,g(x)=-f(x),時,g(x)=f(x),

,即,則
,即,則
∴在x∈[-1,1]上至少存在一個x,使得成立.
點評:此題是一道綜合題,要求學(xué)生會利用導(dǎo)數(shù)求曲線上某點切線方程的斜率,掌握不等式恒成立時所取的條件以及導(dǎo)數(shù)在最值問題中的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知對任意m∈R,直線x+y+m=0都不是f(x)=x3-3ax(a∈R)的切線.
(I)求a的取值范圍;
(II)求證在x∈[-1,1]上至少存在一個x0,使得|f(x0)|≥
14
成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知對任意m∈R,直線x+y+m=0都不是f(x)=x3-3ax(a∈R)的切線,則a的取值范圍是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知對任意m∈R,直線x+y+m=0都不是f(x)=x3-3ax(a∈R)的切線.
(I)求a的取值范圍;
(II)求證在x∈[-1,1]上至少存在一個x0,使得數(shù)學(xué)公式成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年遼寧省丹東市高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

已知對任意m∈R,直線x+y+m=0都不是f(x)=x3-3ax(a∈R)的切線.
(I)求a的取值范圍;
(II)求證在x∈[-1,1]上至少存在一個x,使得成立.

查看答案和解析>>

同步練習(xí)冊答案
主站蜘蛛池模板: 成人国产精品一区 | 欧美电影一区 | 欧美日本久久 | 麻豆毛片| 99re热精品视频 | 成人午夜精品一区二区三区 | 看亚洲a级一级毛片 | 色婷婷在线视频 | 国产精品一区二区三区麻豆 | www.av视频| 精品亚洲一区二区三区在线观看 | av一级毛片| 国产目拍亚洲精品99久久精品 | 精品久久久久久久久久久久久久 | 国产精品一线二线三线 | 五月激情六月婷婷 | a级毛片基地 | 国产精品 日韩 | 国产精品日韩专区 | 国产成人亚洲精品 | 中文字幕亚洲在线观看 | 国产色| 免费在线一区二区 | 日本精品免费 | 亚州国产精品 | av在线一区二区 | 黄色一级片视频播放 | 亚洲美女视频一区二区三区 | 亚洲综合在线播放 | 精品伊人 | 亚洲一区二区高清视频 | 色网站免费视频 | 日韩精品一区二区三区老鸭窝 | 免费成人在线观看 | 国产三区二区一区 | 色噜噜视频在线观看 | 日韩色在线 | 69av.com| 免费黄色的视频 | 国产亚洲精品久久久久动 | 日韩一区在线播放 |