【題目】已知函數,則滿足
的實數
的取值范圍是________.
科目:高中數學 來源: 題型:
【題目】為了在夏季降溫和冬季供暖時減少能源損耗,房屋的屋頂和外墻需要建造隔熱層.某幢建筑物要建造可使用年的隔熱層,每厘米厚的隔熱層建造成本為
萬元.該建筑物每年的能源消耗費用
(單位:萬元)與隔熱層厚度
(單位:厘米)滿足關系:
.若不建隔熱層,每年的能源消耗費用為
萬元.設
為隔熱層建造費用與
年的能源消耗費用之和.
(1)求的值及
的表達式;
(2)隔熱層修建多厚時,總費用最小,并求其最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】南充高中扎實推進陽光體育運動,積極引導學生走向操場,走進大自然,參加體育鍛煉,每天上午第三節課后全校大課間活動時長35分鐘.現為了了解學生的體育鍛煉時間,采用簡單隨機抽樣法抽取了100名學生,對其平均每日參加體育鍛煉的時間(單位:分鐘)進行調查,按平均每日體育鍛煉時間分組統計如下表:
分組 | ||||||
男生人數 | 2 | 16 | 19 | 18 | 5 | 3 |
女生人數 | 3 | 20 | 10 | 2 | 1 | 1 |
若將平均每日參加體育鍛煉的時間不低于120分鐘的學生稱為“鍛煉達人”.
(1)將頻率視為概率,估計我校7000名學生中“鍛煉達人”有多少?
(2)從這100名學生的“鍛煉達人”中按性別分層抽取5人參加某項體育活動.
①求男生和女生各抽取了多少人;
②若從這5人中隨機抽取2人作為組長候選人,求抽取的2人中男生和女生各1人的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖1,在△中,
,
分別為
,
的中點,
為
的中點,
,
.將△
沿
折起到△
的位置,使得平面
平面
,
為
的中點,如圖2.
(1)求證: 平面
;
(2)求證:平面平面
;
(3)線段上是否存在點
,使得
平面
?說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐中,PA⊥平面ABCD,CD⊥AD,BC∥AD,
.
(Ⅰ)求證:CD⊥PD;
(Ⅱ)求證:BD⊥平面PAB;
(Ⅲ)在棱PD上是否存在點M,使CM∥平面PAB,若存在,確定點M的位置,若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com