日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

1.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的離心率e=$\frac{1}{2}$,且點(diǎn)$(1,\frac{3}{2})$在橢圓上,
(1)求橢圓C的方程;
(2)已知A為橢圓C的左頂點(diǎn),直線l過右焦點(diǎn)F2與橢圓C交于M,N兩點(diǎn),若AM,AN的斜率k1,k2滿足k1+k2=-1,求直線l的方程.

分析 (1)由橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的離心率e=$\frac{1}{2}$,且點(diǎn)$(1,\frac{3}{2})$在橢圓上,可得$\left\{\begin{array}{l}{\frac{c}{a}=\frac{1}{2}}\\{\frac{1}{{a}^{2}}+\frac{9}{4{b}^{2}}=1}\\{{a}^{2}={b}^{2}+{c}^{2}}\end{array}\right.$,解出即可;
(2)由(1)可得:左頂點(diǎn)A(-2,0),右焦點(diǎn)(1,0).由題意可知直線l不存在時(shí)不滿足條件,可設(shè)直線l的方程為y=k(x-1),M(x1,y1),N(x2,y2).與橢圓的方程聯(lián)立可得根與系數(shù)的關(guān)系,再利用斜率計(jì)算公式可得k1+k2=-1,$\frac{{y}_{1}}{{x}_{1}+2}+\frac{{y}_{2}}{{x}_{2}+2}$=-1,代入化簡整理即可得出.

解答 解:(1)∵橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的離心率e=$\frac{1}{2}$,且點(diǎn)$(1,\frac{3}{2})$在橢圓上,
∴$\left\{\begin{array}{l}{\frac{c}{a}=\frac{1}{2}}\\{\frac{1}{{a}^{2}}+\frac{9}{4{b}^{2}}=1}\\{{a}^{2}={b}^{2}+{c}^{2}}\end{array}\right.$,解得a=2,b=$\sqrt{3}$,∴橢圓C的方程為$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$=1;
(2)由(1)可得:左頂點(diǎn)A(-2,0),右焦點(diǎn)(1,0).
由題意可知直線l不存在時(shí)不滿足條件,可設(shè)直線l的方程為y=k(x-1),M(x1,y1),N(x2,y2).
聯(lián)立橢圓方程,化為(3+4k2)x2-8k2x+4k2-12=0.由題意可得△>0.
∴x1+x2=$\frac{8{k}^{2}}{3+4{k}^{2}}$,x1x2=$\frac{4{k}^{2}-12}{3+4{k}^{2}}$.
∵k1+k2=-1,∴$\frac{{y}_{1}}{{x}_{1}+2}+\frac{{y}_{2}}{{x}_{2}+2}$=-1,
化為k(x1-1)(x2+2)+k(x2-1)(x1+2)+(x1+2)(x2+2)=0,
整理為(2k+1)x1x2+(k+2)(x1+x2)+4-4k=0.
代入整理為k2-k=0,解得k=0或1.
k=0不滿足題意,應(yīng)舍去.
故k=1,此時(shí)直線l的方程為y=x-1.

點(diǎn)評 本題考查了橢圓的標(biāo)準(zhǔn)方程及其性質(zhì)、直線與橢圓相交問題轉(zhuǎn)化為方程聯(lián)立得到根與系數(shù)的關(guān)系、斜率計(jì)算公式等基礎(chǔ)知識與基本技能方法,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=$\frac{1}{2}{x^2}$-lnx.
(1)求函數(shù)f(x)的極值;
(2)求函數(shù)f(x)在[1,e]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知正整數(shù)數(shù)列{an}滿足a2=4,且對任意n∈N*,有2+$\frac{1}{{{a_{n+1}}}}$<$\frac{{\frac{1}{a_n}+\frac{1}{{{a_{n+1}}}}}}{{\frac{1}{n}-\frac{1}{n+1}}}$<2+$\frac{1}{a_n}$
(1)求a1,a3,并猜想數(shù)列{an}的通項(xiàng)公式;
(2)由(1)的猜想,設(shè)數(shù)列{$\frac{1}{a_n}$}的前n項(xiàng)和為Sn,求證:Sn<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.方程a+b+c+d=8的正整數(shù)解(a,b,c,d)有35組.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.將全體正整數(shù)排成一個(gè)三角形數(shù)陣:按照以上的排列規(guī)律,第20行第2個(gè)數(shù)是192.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若函數(shù)f(x)=$\frac{1}{3}{x^3}$-x在區(qū)間(a2-26,a)上有最大值,則實(shí)數(shù)a的取值范圍為(  )
A.(-1,5)B.(-1,5]C.(-1,2)D.(-1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.確定函數(shù)y=x+$\frac{1}{x}$(x>0)在區(qū)間(1,+∞)的單調(diào)性,并用定義證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知數(shù)列{an}中,a1=1,函數(shù)f(x)=-$\frac{2}{3}$x3+$\frac{a_n}{2}$x2-3an-1x+4在x=1處取得極值,則an=2•3n-1-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知$a={2^{\frac{6}{5}}},b={({\frac{1}{8}})^{-\frac{4}{5}}},c=2{log_5}2$,則a,b,c的大小關(guān)系為(  )
A.c<b<aB.c<a<bC.b<a<cD.b<c<a

查看答案和解析>>

同步練習(xí)冊答案
主站蜘蛛池模板: 成人精品一区二区三区中文字幕 | 久久av一区二区三区 | 国产精品久久久久久久裸模 | 男人的天堂视频网站 | 精品一区二区免费 | 九九热最新视频 | 日韩久久久 | 伊人影院在线观看 | 91久久久久久久久久久久久久久久 | 一级毛片视屏 | 国产一区二区三区四区在线观看 | 国产毛片毛片 | 久久久久极品 | 91福利电影在线观看 | 久久精品成人av | 国产精品久久久久久久久久久久久久 | 国产精品久久久久久无遮挡 | 亚洲国产精品一区 | 欧美一区二区精品 | 国产资源在线观看 | 亚洲精品成人悠悠色影视 | 99综合| 欧美自拍视频 | 婷婷色综合| 亚洲h网站 | 一级欧美 | 一级毛片网 | 一区二区三区不卡视频 | 午夜精品一区二区三区免费视频 | 中文在线播放 | 欧美精品一区二区三区一线天视频 | 中文字幕亚洲一区 | 黄色在线免费观看 | 日韩成人免费视频 | 99日韩 | 久久三区 | 国产欧美精品一区二区 | 久久综合九色综合欧美狠狠 | 瑟瑟网站在线观看 | 91.成人天堂一区 | www.五月婷婷 |