【題目】如圖,在四棱錐中,底面
為平行四邊形,已知
,
,
于
.
(1)求證: ;
(2)若平面平面
,且
,求二面角
的余弦值.
【答案】(1)見(jiàn)解析;(2)
【解析】試題分析:(1)連接,證明
,
∴,∵
,∴
,由此可證
平面
,即可證明
.
(2)由平面
,平面
平面
,
所以,
,
兩兩垂直,以
為原點(diǎn),
,
,
分別為
軸,
軸,
軸建立空間直角坐標(biāo)系,如圖所示.根據(jù)空間向量求面面角的方法即可求二面角
的余弦值.
(1)連接,
∵,
,
是公共邊,
∴,
∴,
∵,∴
,
又平面
,
平面
,
,
∴平面
,
又平面
,
∴.
(2)
由平面
,平面
平面
,
所以,
,
兩兩垂直,以
為原點(diǎn),
,
,
分別為
軸,
軸,
軸建立空間直角坐標(biāo)系,如圖所示.
因?yàn)?/span>,
,
,
所以,
,
,
則,
,
,
,
,
.
設(shè)平面的法向量為
,
則,即
,令
,則
,
又平面的一個(gè)法向量為
,
設(shè)二面角所成的平面角為
,
則
,
顯然二面角是銳角,故二面角
的余弦值為
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著人口老齡化的到來(lái),我國(guó)的勞動(dòng)力人口在不斷減少,“延遲退休”已經(jīng)成為人們?cè)絹?lái)越關(guān)注的話(huà)題,為了解公眾對(duì)“延遲退休”的態(tài)度,某校課外研究性學(xué)習(xí)小組在某社區(qū)隨機(jī)抽取了50人進(jìn)行調(diào)查,將調(diào)查情況進(jìn)行整理后制成下表:
年齡 | [20,25) | [25,30) | [30,35) | [35,40) | [40,45) |
人數(shù) | 4 | 5 | 8 | 5 | 3 |
年齡 | [45,50) | [50,55) | [55,60) | [60,65) | [65,70) |
人數(shù) | 6 | 7 | 3 | 5 | 4 |
經(jīng)調(diào)查年齡在[25,30),[55,60)的被調(diào)查者中贊成“延遲退休”的人數(shù)分別是3人和2人.現(xiàn)從這兩組的被調(diào)查者中各隨機(jī)選取2人,進(jìn)行跟蹤調(diào)查.
(I)求年齡在[25,30)的被調(diào)查者中選取的2人都贊成“延遲退休”的概率;
(II)若選中的4人中,不贊成“延遲退休”的人數(shù)為,求隨機(jī)變量
的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的一個(gè)焦點(diǎn)坐標(biāo)為
.
(Ⅰ)求橢圓的方程;
(Ⅱ)已知點(diǎn),過(guò)點(diǎn)
的直線
(與
軸不重合)與橢圓
交于
兩點(diǎn),直線
與直線
相交于點(diǎn)
,試證明:直線
與
軸平行.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列中,
.
(1)求證:數(shù)列是等比數(shù)列;
(2)求數(shù)列的通項(xiàng)公式;
(3)設(shè),若對(duì)任意
,有
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,已知點(diǎn)P在正方體ABCD-A′B′C′D′的對(duì)角線BD′上,∠PDA=60°.
(1)求DP與CC′所成角的大小.
(2)求DP與平面AA′D′D所成角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)恰有兩個(gè)不同的零點(diǎn),則實(shí)數(shù)
的取值范圍為( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在中,D,E,F分別是邊
,
,
中點(diǎn),下列說(shuō)法正確的是( )
A.
B.
C.若,則
是
在
的投影向量
D.若點(diǎn)P是線段上的動(dòng)點(diǎn),且滿(mǎn)足
,則
的最大值為
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】《九章算術(shù)》中,將底面為長(zhǎng)方形且有一條側(cè)棱與底面垂直的四棱錐稱(chēng)之為陽(yáng)馬,將四個(gè)面都為直角三角形的四面體稱(chēng)之為鱉臑.
如圖,在陽(yáng)馬中,側(cè)棱
底面
,且
,過(guò)棱
的中點(diǎn)
,作
交
于點(diǎn)
,連接
(Ⅰ)證明:.試判斷四面體
是否為鱉臑,若是,寫(xiě)出其每個(gè)面的直角(只需寫(xiě)
出結(jié)論);若不是,說(shuō)明理由;
(Ⅱ)若面與面
所成二面角的大小為
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線:
,半徑為2的圓
與
相切,圓心
在
軸上且在直線
的右上方.
(1)求圓的方程;
(2)過(guò)點(diǎn)的直線與圓
交于
,
兩點(diǎn)(
在
軸上方),問(wèn)在
軸正半軸上是否存在定點(diǎn)
,使得
軸平分
?若存在,請(qǐng)求出點(diǎn)
的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com