【題目】中國國際智能產業博覽會(智博會)每年在重慶市舉辦一屆,每年參加服務的志愿者分“嘉賓”、“法醫”等若干小組.2018年底,來自重慶大學、西南大學、重慶醫科大學、西南政法大學的500名學生在重慶科技館多功能廳參加了“志愿者培訓”,如圖是四所大學參加培訓人數的不完整條形統計圖,現用分層抽樣的方法從中抽出50人作為2019年中國國際智博會服務的志愿者.
(1)若“嘉賓”小組需要2名志愿者,求這2人分別來自不同大學的概率(結果用分數表示).
(2)若法醫小組的3名志愿者只能從重慶醫科大學或西南政法大學抽出,用5表示抽出志愿者來自重慶醫科大學的人數,求的分布列.
科目:高中數學 來源: 題型:
【題目】2018年遼寧省正式實施高考改革.新高考模式下,學生將根據自己的興趣、愛好、學科特長和高校提供的“選考科目要求”進行選課.這樣學生既能尊重自己愛好、特長做好生涯規劃,又能發揮學科優勢,進而在高考中獲得更好的成績和實現自己的理想.考改實施后,學生將在高二年級將面臨著的選課模式,其中“3”是指語、數、外三科必學內容,“1”是指在物理和歷史中選擇一科學習,“2”是指在化學、生物、地理、政治四科中任選兩科學習.某校為了更好的了解學生對“1”的選課情況,學校抽取了部分學生對選課意愿進行調查,依據調查結果制作出如下兩個等高堆積條形圖:根據這兩幅圖中的信息,下列哪個統計結論是不正確的( )
A.樣本中的女生數量多于男生數量
B.樣本中有學物理意愿的學生數量多于有學歷史意愿的學生數量
C.樣本中的男生偏愛物理
D.樣本中的女生偏愛歷史
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的左焦點為
,
是橢圓上關于原點
對稱的兩個動點,當點
的坐標為
時,
的周長恰為
.
(1)求橢圓的方程;
(2)過點作直線
交橢圓于
兩點,且
,求
面積的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】“工資條里顯紅利,個稅新政人民心”.隨著2019年新年鐘聲的敲響,我國自1980年以來,力度最大的一次個人所得稅(簡稱個稅)改革迎來了全面實施的階段.2019年1月1日實施的個稅新政主要內容包括:(1)個稅起征點為5000元;(2)每月應納稅所得額(含稅)=收入-個稅起征點-專項附加扣除;(3)專項附加扣除包括住房、子女教育和贍養老人等.
新舊個稅政策下每月應納稅所得額(含稅)計算方法及其對應的稅率表如下:
舊個稅稅率表(個稅起征點3500元) | 新個稅稅率表(個稅起征點5000元) | |||
繳稅級數 | 每月應納稅所得額(含稅)=收入-個稅起征點 | 稅率(%) | 每月應納稅所得額(含稅)=收入-個稅起征點-專項附加扣除 | 稅率(%) |
1 | 不超過1500元部分 | 3 | 不超過3000元部分 | 3 |
2 | 超過1500元至4500元部分 | 10 | 超過3000元至12000元部分 | 10 |
3 | 超過4500元至9000元的部分 | 20 | 超過12000元至25000元的部分 | 20 |
4 | 超過9000元至35000元的部分 | 25 | 超過25000元至35000元的部分 | 25 |
5 | 超過35000元至55000元部分 | 30 | 超過35000元至55000元部分 | 30 |
··· | ··· | ··· | ··· | ··· |
隨機抽取某市1000名同一收入層級的從業者的相關資料,經統計分析,預估他們2019年的人均月收入24000元.統計資料還表明,他們均符合住房專項扣除;同時,他們每人至多只有一個符合子女教育扣除的孩子,并且他們之中既不符合子女教育扣除又不符合贍養老人扣除、只符合子女教育扣除但不符合贍養老人扣除、只符合贍養老人扣除但不符合子女教育扣除、即符合子女教育扣除又符合贍養老人扣除的人數之比是2:1:1:1;此外,他們均不符合其他專項附加扣除.新個稅政策下該市的專項附加扣除標準為:住房1000元/月,子女教育每孩1000元/月,贍養老人2000元/月等。
假設該市該收入層級的從業者都獨自享受專項附加扣除,將預估的該市該收入層級的
從業者的人均月收入視為其個人月收入.根據樣本估計總體的思想,解決如下問題:
(1)設該市該收入層級的從業者2019年月繳個稅為
元,求
的分布列和期望;
(2)根據新舊個稅方案,估計從2019年1月開始,經過多少個月,該市該收入層級的從業者各月少繳交的個稅之和就超過2019年的月收入?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對于數列,定義“
變換”:
將數列
變換成數列
,其中
,且
,這種“
變換”記作
.繼續對數列
進行“
變換”,得到數列
,依此類推,當得到的數列各項均為
時變換結束.
(1)試問和
經過不斷的“
變換”能否結束?若能,請依次寫出經過“
變換”得到的各數列;若不能,說明理由;
(2)求經過有限次“
變換”后能夠結束的充要條件;
(3)證明:一定能經過有限次“
變換”后結束.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,平面平面
,四邊形
和
都是邊長為2的正方形,點
,
分別是
,
的中點,二面角
的大小為60°.
(1)求證:平面
;
(2)求直線與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】以原點O為極點,x軸的非負半軸為極軸建立極坐標系,已知曲線C的極坐標方程為(
,a為常數)),過點
、傾斜角為
的直線
的參數方程滿足
,(
為參數).
(1)求曲線C的普通方程和直線的參數方程;
(2)若直線與曲線C相交于A、B兩點(點P在A、B之間),且
,求
和
的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com