在扶貧活動中,為了盡快脫貧(無債務)致富,企業甲將經營狀況良好的某種消費品專賣店以5.8萬元的優惠價格轉讓給了尚有5萬元無息貸款沒有償還的小型企業乙,并約定從該店經營的利潤中,首先保證企業乙的全體職工每月最低生活費的開支3 600無后,逐步償還轉讓費(不計息).在甲提供的資料中有:①這種消費品的進價為每件14元;②該店月銷量Q(百件)與銷售價格P(元)的關系如圖所示;③每月需要各種開支2 000元.
(1)當商品的價格為每件多少元時,月利潤扣除職工最低生活費的余額最大?并求最大余額;
(2)企業乙只依靠該店,最早可望在幾年后脫貧?
(1) 19.5元,450元;(2)20年.
解析試題分析:(1) 首先應用待定系數法根據已知圖形求出月銷量Q(百件)與銷售價格P(元)的關系式,顯然是一個分段函數;再將些函數代入該店月利潤余額為L(元)(由題意可得得L=Q(P-14)×100-3600-2000),從而月利潤余額是關于價格P的一個分段函數;每一段又都是一個關于P的二次函數,利用配方法求出各段的最大,取兩個最大值中的最大者即為所求;此問題注意統一單位;(2)設最早可望在n年后脫貧,由(1)可知月利潤扣除職工最低生活費的余額最大值,則可計算得每年的余額值乘以n后大于或等于債務:50000+58000即可,解此不等式可得問題答案.注意要將數學解答的結果還原成實際應用問題的答案.
試題解析:設該店月利潤余額為L,則由題設得L=Q(P-14)×100-3600-2000, ①
由銷量圖易得=
代入①式得L=
(1)當時,
=450元,此時
元,當20<P≤26時,Lmax=
元,此時P=
元。故當P=19.5元時,月利潤余額最大,為450元,
(2)設可在n年內脫貧,
依題意有解得 n≥20
即最早可望在20年后脫貧
考點:1.分段函數;2.二次函數;3.不等式.
科目:高中數學 來源: 題型:解答題
已知函數f(x)=x+sin x.
(1)設P,Q是函數f(x)圖像上相異的兩點,證明:直線PQ的斜率大于0;
(2)求實數a的取值范圍,使不等式f(x)≥axcos x在上恒成立.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com