【題目】已知、
是橢圓
上的兩點(diǎn),且
,其中
為橢圓的右焦點(diǎn).
(1)求實(shí)數(shù)的取值范圍;
(2)在軸上是否存在一個(gè)定點(diǎn)
,使得
為定值?若存在,求出定值和定點(diǎn)坐標(biāo);若不存在,說明理由.
【答案】(1)(2)存在定點(diǎn)
,使得
為定值
【解析】
(1)討論直線的斜率為0與不為0,斜率為0時(shí),直接得到
,斜率不為0時(shí),設(shè)直線為
,聯(lián)立
可得到
,
.即可得到
,又
等價(jià)于
,代入即可解出實(shí)數(shù)
的取值范圍。
(2)假設(shè)存在點(diǎn),使得
為定值,令
由(1)的結(jié)果代入計(jì)算,得到
為定值,即
,解出即可得到答案。最后說明直線
的斜率為0是也成立即可。
(1)由已知條件知:直線過橢圓右焦點(diǎn)
.
當(dāng)直線與
軸重合時(shí),
.
當(dāng)直線不與
軸重合時(shí),可設(shè)
:
,代入橢圓方程,并整理得
.
設(shè),
,由根與系數(shù)的關(guān)系得
,
.
所以.又由
得
,所以
,解之得
.
綜上,實(shí)數(shù)的取值范圍是
.
(2)設(shè),則
為定值,所以
,解得
.
故存在定點(diǎn),使得
為定值
.
(經(jīng)檢驗(yàn),當(dāng)與
軸重合時(shí)也成立)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國(guó)是世界嚴(yán)重缺水的國(guó)家,城市缺水問題較為突出,某市政府為了鼓勵(lì)居民節(jié)約用水,計(jì)劃在本市試行居民生活用水定額管理,即確定一個(gè)合理的居民月用水量標(biāo)準(zhǔn)(噸),用水量不超過
的部分按平價(jià)收費(fèi),超過
的部分按議價(jià)收費(fèi),為了了解全市民月用水量的分布情況,通過抽樣,獲得了100位居民某年的月用水量(單位:噸),將數(shù)據(jù)按照
分成9組,制成了如圖所示的頻率分布直方圖.
(Ⅰ)若全市居民中月均用水量不低于3噸的人數(shù)為3.6萬,試估計(jì)全市有多少居民?并說明理由;
(Ⅱ)若該市政府?dāng)M采取分層抽樣的方法在用水量噸數(shù)為和
之間選取7戶居民作為議價(jià)水費(fèi)價(jià)格聽證會(huì)的代表,并決定會(huì)后從這7戶家庭中按抽簽方式選出4戶頒發(fā)“低碳環(huán)保家庭”獎(jiǎng),設(shè)
為用水量噸數(shù)在
中的獲獎(jiǎng)的家庭數(shù),
為用水量噸數(shù)在
中的獲獎(jiǎng)家庭數(shù),記隨機(jī)變量
,求
的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】求下列各曲線的標(biāo)準(zhǔn)方程.
(1)長(zhǎng)軸長(zhǎng)為,離心率為
,焦點(diǎn)在
軸上的橢圓;
(2)已知雙曲線的漸近線方程為,焦距為
,求雙曲線的標(biāo)準(zhǔn)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了了解某地區(qū)高三學(xué)生的身體發(fā)育情況,抽查了該地區(qū)100名年齡為17.5歲~18歲的男生體重(kg),得到頻率分布直方圖如下:求:
(1)根據(jù)直方圖可得這100名學(xué)生中體重在(56,64)的學(xué)生人數(shù).
(2)請(qǐng)根據(jù)上面的頻率分布直方圖估計(jì)該地區(qū)17.5-18歲的男生體重.
(3)若在這100名男生中隨意抽取1人,該生體重低于62的概率是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓O:x2+y2=9及點(diǎn)C(2,1),過點(diǎn)C的直線l與圓O交于P,Q兩點(diǎn),當(dāng)△OPQ的面積最大時(shí),直線l的方程為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)求經(jīng)過點(diǎn)P(4,1),且在兩坐標(biāo)軸上的截距相等的直線方程.
(2)設(shè)直線y=x+2a與圓C:x2+y2-2ay-2=0相交于A,B兩點(diǎn),若|AB|=2,求圓C的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司每年生產(chǎn)、銷售某種產(chǎn)品的成本包含廣告費(fèi)用支出和浮動(dòng)成本兩部分,該產(chǎn)品的年產(chǎn)量為萬件,每年投入的廣告費(fèi)為
萬元,另外,當(dāng)年產(chǎn)量不超過
萬件時(shí),浮動(dòng)成本為
萬元,當(dāng)年產(chǎn)量超過
萬件時(shí),浮動(dòng)成本為
萬元.若每萬件該產(chǎn)品銷售價(jià)格為
萬元,且每年該產(chǎn)品都能銷售完.
(1)設(shè)年利潤(rùn)為(萬元),試求
關(guān)于
的函數(shù)關(guān)系式;
(2)年產(chǎn)量為多少萬件時(shí),該公司所獲利潤(rùn)
最大?并求出最大利潤(rùn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中所有正確的序號(hào)是____.
(1),對(duì)應(yīng)
:
是映射;
(2)函數(shù)和
都是既奇又偶函數(shù);
(3)已知對(duì)任意的非零實(shí)數(shù)都有
,則
;
(4)函數(shù)的定義域是
,則函數(shù)
的定義域?yàn)?/span>
;
(5)函數(shù)在
和
上都是增函數(shù),則函數(shù)
在
上一定是增函數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com