日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

已知雙曲線C:2x2-y2=2與點(diǎn)P(1,2)
(1)求過P(1,2)點(diǎn)的直線l的斜率取值范圍,使l與C分別有一個(gè)交點(diǎn),兩個(gè)交點(diǎn),沒有交點(diǎn).
(2)若Q(1,1),試判斷以Q為中點(diǎn)的弦是否存在.

解:(1)當(dāng)直線l的斜率不存在時(shí),l的方程為x=1,與曲線C有一個(gè)交點(diǎn).
當(dāng)l的斜率存在時(shí),設(shè)直線l的方程為y-2=k(x-1),代入C的方程,
并整理得(2-k2)x2+2(k2-2k)x-k2+4k-6=0 (*
(ⅰ)當(dāng)2-k2=0,即k=±時(shí),方程(*)有一個(gè)根,l與C有一個(gè)交點(diǎn)
(ⅱ)當(dāng)2-k2≠0,即k≠±時(shí)
△=[2(k2-2k)]2-4(2-k2)(-k2+4k-6)=16(3-2k)
①當(dāng)△=0,即3-2k=0,k=時(shí),方程(*)有一個(gè)實(shí)根,l與C有一個(gè)交點(diǎn).
②當(dāng)△>0,即k<,又k≠±
故當(dāng)k<-或-<k<<k<時(shí),方程(*)有兩不等實(shí)根,l與C有兩個(gè)交點(diǎn).
③當(dāng)△<0,即k>時(shí),方程(*)無解,l與C無交點(diǎn).
綜上知:當(dāng)k=±,或k=,或k不存在時(shí),l與C只有一個(gè)交點(diǎn);
當(dāng)<k<,或-<k<,或k<-時(shí),l與C有兩個(gè)交點(diǎn);
當(dāng)k>時(shí),l與C沒有交點(diǎn).
(2)假設(shè)以Q為中點(diǎn)的弦存在,設(shè)為AB,
且A(x1,y1),B(x2,y2),
則2x12-y12=2,2x22-y22=2,
兩式相減得2(x1-x2)(x1+x2)=(y1-y2)(y1+y2
又∵x1+x2=2,y1+y2=2,
∴2(x1-x2)=y1-y1
即kAB==2,
但漸近線斜率為±
結(jié)合圖形知直線AB與C無交點(diǎn),所以假設(shè)不正確,
即以Q為中點(diǎn)的弦不存在.
分析:(1)當(dāng)直線l的斜率不存在時(shí),l的方程為x=1,與曲線C有一個(gè)交點(diǎn).當(dāng)l的斜率存在時(shí),設(shè)直線l的方程為y-2=k(x-1),代入C的方程,并整理得(2-k2)x2+2(k2-2k)x-k2+4k-6=0,然后進(jìn)行分類討論,把直線與雙曲線交點(diǎn)個(gè)數(shù)問題,歸結(jié)為方程組解的問題進(jìn)行求解.
(2)假設(shè)以Q為中點(diǎn)的弦存在,設(shè)為AB,且A(x1,y1),B(x2,y2),則2x12-y12=2,2x22-y22=2兩式相減得.2(x1-x2)(x1+x2)=(y1-y2)(y1+y2),再由點(diǎn)差法進(jìn)行求解.
點(diǎn)評(píng):第一問考查直線與雙曲線交點(diǎn)個(gè)數(shù)問題,歸結(jié)為方程組解的問題.第二問考查處理直線與圓錐曲線問題的第二種方法--“點(diǎn)差法”,涉及弦長(zhǎng)的中點(diǎn)問題,常用“點(diǎn)差法”設(shè)而不求,將弦所在直線的斜率,弦的中點(diǎn)坐標(biāo)聯(lián)系起來,相互轉(zhuǎn)化.具體涉及到二次方程根的個(gè)數(shù)的判定、兩點(diǎn)連線的斜率公式、中點(diǎn)坐標(biāo)公式.易錯(cuò)點(diǎn):第一問,求二次方程根的個(gè)數(shù),忽略了二次項(xiàng)系數(shù)的討論.第二問,算得以Q為中點(diǎn)弦的斜率為2,就認(rèn)為所求直線存在了.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線C:2x2-y2=2與點(diǎn)P(1,2)
(1)求過P(1,2)點(diǎn)的直線l的斜率取值范圍,使l與C分別有一個(gè)交點(diǎn),兩個(gè)交點(diǎn),沒有交點(diǎn).
(2)若Q(1,1),試判斷以Q為中點(diǎn)的弦是否存在.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•上海)在平面直角坐標(biāo)系xOy中,已知雙曲線C:2x2-y2=1.
(1)設(shè)F是C的左焦點(diǎn),M是C右支上一點(diǎn),若|MF|=2
2
,求點(diǎn)M的坐標(biāo);
(2)過C的左焦點(diǎn)作C的兩條漸近線的平行線,求這兩組平行線圍成的平行四邊形的面積;
(3)設(shè)斜率為k(|k|<
2
)的直線l交C于P、Q兩點(diǎn),若l與圓x2+y2=1相切,求證:OP⊥OQ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線C:2x2y2=2與點(diǎn)P(1,2)

(1)求過P(1,2)點(diǎn)的直線l的斜率取值范圍,使lC分別有一個(gè)交點(diǎn),兩個(gè)交點(diǎn),沒有交點(diǎn).

(2)若Q(1,1),試判斷以Q為中點(diǎn)的弦是否存在.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆云南大理賓川縣四中高二1月月考文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知雙曲線C:2x2-y2=2與點(diǎn)P(1,2).求過點(diǎn)P(1,2)的直線l的斜率k的取值范圍,使l與C只有一個(gè)交點(diǎn);

 

查看答案和解析>>

同步練習(xí)冊(cè)答案
主站蜘蛛池模板: 在线观看国产视频 | 欧美一级全黄 | 日本在线精品 | 91亚洲一区 | 亚洲免费国产视频 | 在线中文| 91精品久久久久久久91蜜桃 | 日韩在线观看成人 | 美女久久久 | 国产精品视频免费观看 | 国产精品一区二区不卡视频 | 久草视频在线首页 | 日韩伦理一区二区 | 亚洲品质自拍视频网站 | 欧美国产精品一区二区 | 亚洲毛片 | 亚洲福利在线观看 | 一区二区三区在线播放 | 男女羞羞羞视频午夜视频 | 久久久久性视频 | 成人av电影免费在线观看 | 国产精品免费一区二区三区四区 | 国产欧美一区二区三区在线看 | 成人看的羞羞视频免费观看 | 精品国产不卡一区二区三区 | 国产精品久久久久久亚洲毛片 | 国产一区二区三区精品在线 | xxxcom在线观看 | 探花网站| 久久免费视频国产 | 亚洲视频在线看 | 日韩欧美一区在线 | 91久久精品久久国产性色也91 | 欧美同性大尺度腐剧 | 91中文字幕| 免费观看成人毛片 | 欧美日本韩国一区二区三区 | 久久亚洲免费 | a级三四级黄大片 | 亚洲视频在线一区二区 | 一区二区中文 |