日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
已知f(x)=
ax2+b
x
,g(x)=2lnx,曲線y=f(x)在點(1,f(1))處的切線方程為2x-y-2=0.
(1)求a,b的值;
(2)若當x≥1時,g(x)≤mf(x)恒成立,求m的取值范圍;
(3)已知
3
=1.732,試估算ln
4
3
的近似值(精確到0.01).
考點:利用導數研究曲線上某點切線方程,利用導數求閉區間上函數的最值
專題:分類討論,導數的概念及應用,導數的綜合應用,不等式的解法及應用
分析:(1)求出函數f(x)的導數,由切線方程可得切線的斜率和切點,解方程可得a,b的值;
(2)求出f(x)的解析式,由g(x)≤mf(x)得2lnx≤m(x-
1
x
),即2lnx-m(x-
1
x
)≤0,令ϕ(x)=2lnx-m(x-
1
x
),對m討論,①當m=0時,②當m≤-1時,③當-1<m<0時,④當0<m<1時,⑤當m≥1時,討論函數的單調性,即可判斷;
(3)對任意的k>1,ϕ(k)=2lnk-m(k-
1
k
),由(2)知,當m=1時,ϕ(k)=2lnk-k+
1
k
<0恒成立,以及由(2)④知當0<m<1時,得到的結論,取k=
4
3
,代入計算即可得到所求近似值.
解答: 解:(1)f(x)=ax+
b
x
,f′(x)=a-
b
x2

由于f(x)在點(1,f(1))處的切線方程為2x-y-2=0,
則f′(1)=2,f(1)=0即a-b=2,a+b=0,
解得a=1,b=-1;
(2)f(x)=x-
1
x

由g(x)≤mf(x)得2lnx≤m(x-
1
x
),
即2lnx-m(x-
1
x
)≤0,
令ϕ(x)=2lnx-m(x-
1
x
)則ϕ′(x)=
2
x
-m(1+
1
x2
)=
-mx2+2x-m
x2

①當m=0時,ϕ′(x)=
2
x
>0恒成立,
即有ϕ(x)在(1,+∞)上單調遞增,則ϕ(x)>ϕ(1)=0,
這與ϕ(x)≤0矛盾,不合題意;
若m≠0,令△=4-4m2=4(1+m)(1-m),
②當m≤-1時,△≤0恒成立且-m>0
即有-mx2+2x-m≥0恒成立,即ϕ′(x)≥0恒成立
即ϕ(x)在(1,+∞)上單調遞增,
即有ϕ(x)>ϕ(1)=0,這與ϕ(x)≤0矛盾,不合題意;
③當-1<m<0時,△>0,方程-mx2+2x-m=0有兩個不等實根x1,x2(不妨設x1<x2),
由韋達定理得x1•x2=1>0,x1+x2=
2
m
<0,
即x1<x2<0,則當x≥1時,-mx2+2x-m≥0恒成立,
即ϕ′(x)>0恒成立,即有ϕ(x)在(1,+∞)上單調遞增,
則ϕ(x)>ϕ(1)=0,這與ϕ(x)≤0矛盾,不合題意;
④當0<m<1時,△>0,方程-mx2+2x-m=0有兩個不等實根x1,x2(不妨設x1<x2),
0<x1=
1-
1-m2
m
<1,x2=
1+
1-m2
m
>1即有0<x1<1<x2
即有ϕ(x)在(1,x2)單調遞增,當x∈(1,x2)時,ϕ′(x)>0,
即有ϕ(x)在(1,+∞)上單調遞增,即有ϕ(x)>ϕ(1)=0,這與ϕ(x)≤0矛盾,不合題意;
⑤當m≥1時,△≤0且-m<0,則ϕ′(x)≤0恒成立,
即有ϕ(x)在[1,+∞)上單調遞減,ϕ(x)≤ϕ(1)=0,合題意.
綜上所述,當m∈[1,+∞)時,g(x)≤mf(x)恒成立;
(3)對任意的k>1,ϕ(k)=2lnk-m(k-
1
k
),
由(2)知,當m=1時,ϕ(k)=2lnk-k+
1
k
<0恒成立,
即2lnk<k-
1
k

取k=
4
3
得ln
4
3
1
2
4
3
-
3
4
)≈0.289.
由(2)④知當0<m<1時,ϕ(x)在(1,
1+
1-m2
m
)上單調遞增,
ϕ(x)>ϕ(1)=0,
令x1=
1-
1-m2
m
得:m=
1
k
,ϕ(x)=2lnx-m(x-
1
x
)>0
∴ϕ(k)=2lnk-m(k-
1
k
)=2lnk+
1
k2
-1>0,即有lnk>
1
2
(1-
1
k2
),
取k=
4
3
得:ln
4
3
2
7
≈0.286,
∴0.286<ln
4
3
<0.289,
取ln
4
3
=
1
2
×(0.286+0.289)=0.2875≈0.29,
∴ln
4
3
≈0.29.
點評:本題考查導數的運用:求切線方程和求單調區間,主要考查判斷函數的單調性和不等式的恒成立問題,具有一定的運算量,運用分類討論的思想方法和兩邊夾及取均值思想是解題的關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設a∈R,f(x)=cosx(asinx-cosx)+sin2x的定義域是[
π
4
11
24
π],f(
π
4
)=
3
.給出下列幾個命題:
①f(x)在x=
π
4
處取得小值;
[
5
12
π,
11
24
π]
是f(x)的一個單調遞減區間;
③f(x)圖象向左平移
π
12
個單位,將得到函數y=2sin2x的圖象;
④使得f(x)取得最大值的點僅有一個x=
π
3

其中正確命題的序號是
 
.(將你認為正確命題的序號都填上)

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=2sin(2x+
π
3
)+cos(2x-
π
6
).
(Ⅰ)求f(x)的周期和單調遞增區間;
(Ⅱ)求函數f(x)在區間[-
π
4
π
4
]上的最大值和最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數 f(x)=
3
sin2x-2sin2x-1
(Ⅰ)求函數f(x)的單調減區間;
(Ⅱ)設△ABC的內角A,B,C的對邊分別為a,b,c,且c=
7
,f(C)=-l,若3sinA=sinB,求該三角形的面積S.

查看答案和解析>>

科目:高中數學 來源: 題型:

在△ABC中,內角A,B,C所對的邊分別為a,b,c.已知cosB(tanAtanB+tanCtanB)=tanAtanC,
(1)求證:a,b,c成等比數列;
(2)若a=1,c=2,求△ABC的面積S.

查看答案和解析>>

科目:高中數學 來源: 題型:

在平面直角坐標系中,方程
|x+y|
a2
+
|x-y|
b2
=1(a>b>0)表示的曲線是(  )
A、橢圓B、雙曲線C、矩形D、菱形

查看答案和解析>>

科目:高中數學 來源: 題型:

體育場一角的看臺的座位是這樣排列的:第一排有15個座位,從第二排起每一排都比前一排多2個座位,你能用an表示第n排的座位數嗎?第10排能坐多少個人?

查看答案和解析>>

科目:高中數學 來源: 題型:

某廠生產一種元零件,生產能力為日產100件,每日的固定成本為150元,每件的平均可變成本為10元.
(1)求該廠次元零件的日總成本函數及平均成本函數;
(2)若每件售價14元,寫出收益函數;
(3)寫出利潤函數并求盈虧平衡點.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知直線y=x+1與圓x2+y2=24相交于A、B兩點,求弦長|AB|的值.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 欧美成人精品一区二区三区在线看 | 一本到av| 久久激情综合 | 国产一区二区三区四区 | 国产毛片在线 | 日韩激情网站 | 日韩视频在线观看 | 色片网址| 激情久久久 | 久久视频免费 | 不卡在线 | 日韩在线精品 | 艳妇臀荡乳欲伦交换h漫 | 成年人毛片 | 中文字幕中文字幕 | 欧美日韩三级 | 91亚色视频 | 91久久久久久久久 | 午夜精品久久久久久久99黑人 | 97视频在线免费观看 | 欧美日韩国产二区 | 国产一区二区在线播放 | 性久久久久久久 | 日韩精品少妇 | 天堂8中文 | 午夜精品在线 | 成人精品视频 | 久久久久久久久久国产精品 | 夜色在线影院 | 91福利网| 欧美不卡在线 | 国产性猛交╳xxx乱大交 | 日韩1区2区| 欧美精品一区二区在线观看 | 永久黄网站色视频免费观看w | 中文字幕在线视频观看 | 成人b站 | 日本一区二区在线播放 | 中文字幕少妇 | 综合99 | 狠狠干狠狠插 |