日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

9.已知f(x)=ax3-x2-x+b(a,b∈R),g(x)=$\frac{{3\sqrt{e}}}{4}{e^x}(e$是自然對(duì)數(shù)的底數(shù)),f(x)的圖象在x=-$\frac{1}{2}$處的切線方程為y=$\frac{3}{4}x+\frac{9}{8}$.
(1)求a,b的值; 
(2)探究:直線y=$\frac{3}{4}x+\frac{9}{8}$.是否可以與函數(shù)g(x)的圖象相切?若可以,寫(xiě)出切點(diǎn)坐標(biāo),否則,說(shuō)明理由
(3)證明:當(dāng)x∈(-∞,2]時(shí),f(x)≤g(x).

分析 (1)求出函數(shù)的導(dǎo)數(shù),根據(jù)切線方程求出a的值,求出A的坐標(biāo),得到關(guān)于b的方程,解出即可;
(2)設(shè)出切點(diǎn)A,根據(jù)切線方程求出A的坐標(biāo),從而求出切線方程,整理即可;
(3)問(wèn)題轉(zhuǎn)化為x∈(-∞,2]時(shí),f(x)≤$\frac{3}{4}$x+$\frac{9}{8}$,令k(x)=$\frac{3}{4}$x+$\frac{9}{8}$-f(x)=-x3+x2+$\frac{7}{4}$x+$\frac{1}{2}$,根據(jù)函數(shù)的單調(diào)性證明即可.

解答 解:(1)f′(x)=3ax2-2x-1,
∵f(x)的圖象在x=-$\frac{1}{2}$處的切線方程是y=$\frac{3}{4}$x+$\frac{9}{8}$,
故f′(-$\frac{1}{2}$)=$\frac{3}{4}$,即3a•(-$\frac{1}{2}$)2•(-$\frac{1}{2}$)-1=$\frac{3}{4}$,解得:a=1;
故f(x)的圖象過(guò)A(-$\frac{1}{2}$,$\frac{3}{4}$),
故(-$\frac{1}{2}$)3-(-$\frac{1}{2}$)2-(-$\frac{1}{2}$)+b=$\frac{3}{4}$,解得:b=$\frac{5}{8}$,
綜上,a=1,b=$\frac{5}{8}$;
(2)設(shè)直線y=$\frac{3}{4}$x+$\frac{9}{8}$與函數(shù)g(x)的圖象相切于A(x0,y0),
∵g′(x)=$\frac{3\sqrt{e}}{4}$ex,∴過(guò)A點(diǎn)的直線的斜率是g′(x0)=$\frac{3\sqrt{e}}{4}$e${\;}^{{x}_{0}}$,
又直線y=$\frac{3}{4}$x+$\frac{9}{8}$的斜率是$\frac{3}{4}$,
故$\frac{3\sqrt{e}}{4}$e${\;}^{{x}_{0}}$=$\frac{3}{4}$,解得:x0=-$\frac{1}{2}$,
將x0=-$\frac{1}{2}$代入y=$\frac{3\sqrt{e}}{4}$ex,得點(diǎn)A的坐標(biāo)是(-$\frac{1}{2}$,$\frac{3}{4}$),
故切線方程為:y-$\frac{3}{4}$=$\frac{3}{4}$(x+$\frac{1}{2}$),化簡(jiǎn)得y=$\frac{3}{4}$x+$\frac{9}{8}$,
故直線y=$\frac{3}{4}$x+$\frac{9}{8}$可以與函數(shù)g(x)的圖象相切,切點(diǎn)坐標(biāo)是(-$\frac{1}{2}$,$\frac{3}{4}$);
(3)證明:要證明:x∈(-∞,2]時(shí),f(x)≤g(x),
只需證明x∈(-∞,2]時(shí),f(x)≤$\frac{3}{4}$x+$\frac{9}{8}$,
令k(x)=$\frac{3}{4}$x+$\frac{9}{8}$-f(x)=-x3+x2+$\frac{7}{4}$x+$\frac{1}{2}$,
k′(x)=-3x2+2x+$\frac{7}{4}$,令k′(x)=-3x2+2x+$\frac{7}{4}$=0,
解得:x=-$\frac{1}{2}$,x=$\frac{7}{6}$,
故k(x)min=min{k(-$\frac{1}{2}$),k(2)},
∵k(-$\frac{1}{2}$)=0,k(2)=0,故k(x)min=0,
故?x∈(-∞,2],f(x)≤$\frac{3}{4}$x+$\frac{9}{8}$成立,
?x∈(-∞,2],令h(x)=g(x)-($\frac{3}{4}$x+$\frac{9}{8}$)=$\frac{3\sqrt{e}}{4}$ex-$\frac{3}{4}$x-$\frac{9}{8}$,
h′(x)=$\frac{3\sqrt{e}}{4}$ex-$\frac{3}{4}$,令h′(x)=0,x=-$\frac{1}{2}$,
x∈(-∞,-$\frac{1}{2}$)時(shí),h′(x)<0,當(dāng)x∈(-$\frac{1}{2}$,2]時(shí),h′(x)>0,
故h(x)≥h(-$\frac{1}{2}$)=0,即?x∈(-∞,2]時(shí),g(x)≥$\frac{3}{4}$x+$\frac{9}{8}$,
由不等式的性質(zhì)的傳遞性得:x∈(-∞,2]時(shí),f(x)≤g(x).

點(diǎn)評(píng) 本題考查了切線方程問(wèn)題,考查導(dǎo)數(shù)的應(yīng)用以及不等式的證明,是一道綜合題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.環(huán)境監(jiān)測(cè)中心監(jiān)測(cè)我市空氣質(zhì)量,每天都要記錄空氣質(zhì)量指數(shù)(指數(shù)采取10分制,保留一位小數(shù)).現(xiàn)隨機(jī)抽取20天的指數(shù)(見(jiàn)下表),將指數(shù)不低于8.5視為當(dāng)天空氣質(zhì)量?jī)?yōu)良.
 天數(shù) 134 7 810 
 空氣質(zhì)量指數(shù) 7.18.3  7.3 9.5 8.6 7.7 8.7 8.88.7  9.1
 天數(shù) 1112 13 14 1516 17 18 19 20 
 空氣質(zhì)量指數(shù) 7.4 8.5 9.7 8.4 9.6 7.6 9.4 8.9 8.3 9.3
(Ⅰ)求從這20天隨機(jī)抽取3天,至少有2天空氣質(zhì)量為優(yōu)良的概率;
(Ⅱ)以這20天的數(shù)據(jù)估計(jì)我市總體空氣質(zhì)量(天數(shù)很多).若從我市總體空氣質(zhì)量指數(shù)中隨機(jī)抽取3天的指數(shù),用X表示抽到空氣質(zhì)量為優(yōu)良的天數(shù),求X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知函數(shù)f(x)=Asin(ωx+ϕ),x∈R(其中A>0,ω>0,0<ϕ<$\frac{π}{2}$)的圖象與x軸的交點(diǎn)中,相鄰兩個(gè)交點(diǎn)之間的距離為$\frac{π}{4}$,且圖象上一個(gè)最低點(diǎn)為$M(\frac{π}{3},-1)$.
(Ⅰ)求f(x)的表達(dá)式;
(Ⅱ)將函數(shù)f(x)的圖象向右平移$\frac{π}{8}$個(gè)單位,再將圖象上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍(縱坐標(biāo)不變),得到函數(shù)y=g(x)的圖象,若關(guān)于x的方程g(x)+k=0,在區(qū)間[0,$\frac{π}{2}$]上有且只有一個(gè)實(shí)數(shù)解,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知函數(shù)f(x)=a(x-1),g(x)=(ax-1)ex,a∈R.
(Ⅰ)判斷直線y=f(x)能否與曲線y=g(x)相切,并說(shuō)明理由;
(Ⅱ)若不等式f(x)>g(x)有且僅有兩個(gè)整數(shù)解,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知函數(shù)f(x)=|x+5|-|x-1|(x∈R).
( I)解關(guān)于x的不等式f(x)≤x;
( II)證明:記函數(shù)f(x)的最大值為k,若lga+lg(2b)=lg(a+4b+k),試求ab的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知集合A={1,2,3,4,5},B={3,4,5,6,7},則圖中陰影部分表示的集合為(  )
A.{1,2,3,4,5}B.{3,4,5,6,7}C.{1,2,3,4,5,6,7}D.{3,4,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.對(duì)于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0),給出定義:設(shè)f′(x)是函數(shù)y=f(x)的導(dǎo)數(shù),f″(x)是f′(x)的導(dǎo)數(shù),若方程f″(x)=0有實(shí)數(shù)解x0,則稱點(diǎn)(x0,f(x0))為函數(shù)y=f(x)的“拐點(diǎn)”.某同學(xué)經(jīng)過(guò)探究發(fā)現(xiàn),任何一個(gè)三次函數(shù)都有“拐點(diǎn)”和對(duì)稱中心,且“拐點(diǎn)”就是對(duì)稱中心.
(Ⅰ)求函數(shù)f(x)=x3-3x2+3x的對(duì)稱中心.
(Ⅱ)對(duì)于(Ⅰ)中的函數(shù)f(x),計(jì)算f(-98)+f(-97)+…+f(-1)+f(0)+f(1)+…+f(99)+f(100).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的左、右焦點(diǎn)為F1、F2,在雙曲線上存在點(diǎn)P滿足3|$\overrightarrow{P{F_1}}+\overrightarrow{P{F_2}}|≤2|\overrightarrow{{F_1}{F_2}}$|,則雙曲線的漸近線的斜率$\frac{b}{a}$的取值范圍是(  )
A.$0<\frac{b}{a}≤\frac{3}{2}$B.$\frac{b}{a}≥\frac{3}{2}$C.$0<\frac{b}{a}≤\frac{{\sqrt{5}}}{2}$D.$\frac{b}{a}≥\frac{{\sqrt{5}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知$\overrightarrow a=(1,1)$,$\overrightarrow b=(1,0)$,則$|{\overrightarrow a-2\overrightarrow b}|$=$\sqrt{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案
主站蜘蛛池模板: 日本三级电影天堂 | 欧美日韩电影一区二区 | 无遮挡又黄又刺激的视频 | 亚洲综合色网 | 国产激情在线观看视频 | 国产一区二区久久久 | 亚洲欧美一区二区三区在线 | 久久久91精品国产一区二区 | 国产精品成av人在线视午夜片 | 免费福利片2019潦草影视午夜 | 日韩9999| 国产一区二区三区在线视频 | 成人在线观看免费爱爱 | 日韩激情综合网 | 日韩av在线一区二区三区 | 青草视频网站 | 欧美一区二区三 | 午夜视频在线免费观看 | 91av国产在线视频 | 黑人巨大精品欧美一区二区小视频 | 二区三区 | 国产视频欧美视频 | 国产一极毛片 | 黄色毛片网站 | 黄色片视频网站 | 九九热这里只有精品6 | 亚洲欧美日韩另类精品一区二区三区 | 黑人巨大精品欧美一区二区免费 | 81精品国产乱码久久久久久 | 国产精品日韩欧美一区二区三区 | 久久久国产一区二区三区四区小说 | 亚洲黄色一区二区 | 91麻豆精品一二三区在线 | 91视频国产区 | 成人免费一区二区三区视频网站 | 免费日韩 | 天堂中文字幕在线 | 中文字幕日韩在线 | 在线国产一区二区 | 国产精品视频 | 中文字幕亚洲精品在线观看 |