【題目】選修4-4:坐標系與參數方程
平面直角坐標系中,直線的參數方程為
(
為參數),以原點為極點,
軸正半軸為極軸建立極坐標系,曲線
的極坐標方程為
.
(1)寫出直線的極坐標方程與曲線
的直角坐標方程;
(2)已知與直線平行的直線
過點
,且與曲線
交于
兩點,試求
.
科目:高中數學 來源: 題型:
【題目】共享單車是指由企業在校園、公交站點、商業區、公共服務區等場所提供的自行車單車共享服務,由于其依托“互聯網+”,符合“低碳出行”的理念,已越來越多地引起了人們的關注.某部門為了對該城市共享單車加強監管,隨機選取了100人就該城市共享單車的推行情況進行問卷調查,并將問卷中的這100人根據其滿意度評分值(百分制)按照[50,60),[60,70),…,[90,100] 分成5組,制成如圖所示頻率分直方圖.
(1) 求圖中的值;
(2) 已知滿意度評分值在[90,100]內的男生數與女生數的比為2:1,若在滿意度評分值為[90,100]的人中隨機抽取4人進行座談,設其中的女生人數為隨機變量,求
的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設定義在[﹣2,2]上的奇函數f(x)=x5+x3+b
(1)求b值;
(2)若f(x)在[0,2]上單調遞增,且f(m)+f(m﹣1)>0,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,且
的圖象與直線
的兩個相鄰公共點之間的距離為
.
(1)求函數的解析式,并求出
的單調遞增區間;
(2)將函數的圖象上所有點向左平移
個單位,得到函數
的圖象,設
,
,
為
的三個內角,若
,且向量
,
,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】定義:已知函數f(x)在[m,n](m<n)上的最小值為t,若t≤m恒成立,則稱函數f(x)在[m,n](m<n)上具有“DK”性質.例如函數 在[1,9]上就具有“DK”性質.
(1)判斷函數f(x)=x2﹣2x+2在[1,2]上是否具有“DK”性質?說明理由;
(2)若g(x)=x2﹣ax+2在[a,a+1]上具有“DK”性質,求a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知,
,動點
滿足
.設動點
的軌跡為
.
(1)求動點的軌跡方程,并說明軌跡
是什么圖形;
(2)求動點與定點
連線的斜率的最小值;
(3)設直線交軌跡
于
兩點,是否存在以線段
為直徑的圓經過
?若存在,求出實數
的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某品牌的手機專賣店采用分期付款方式經銷手機,從參與購手機活動的100名顧客中進行統計,統計結果如下表所示,已知分3期付款的頻率為0.2,若顧客采用一次付清,其利潤為200元,采用2期或3期付款,其利潤為250元,采用4期或5期付款,其利潤為300元.
付款期數 | 1 | 2 | 3 | 4 | 5 |
頻數 | 40 | 20 | a | b | 10 |
(I)若以上表計算出的頻率近似代替概率,從購買手機的顧客(數量較多)中隨機抽取3位顧客,求事件“至多有1位采用分3期付款”的概率
;
(II)按分層抽樣的方式從這100位顧客中抽取5人,再從抽出的5人中隨機抽取3人,記該店在這3人身上賺取的總利潤為隨機變量,求
的分布列及數學期望
.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com