【題目】已知x≤1,比較3x3與3x2-x+1的大小.
科目:高中數學 來源: 題型:
【題目】在扶貧活動中,為了盡快脫貧(無債務)致富,企業甲將經營狀況良好的某種消費品專賣店以5.8萬元的優惠價格轉讓給了尚有5萬元無息貸款沒有償還的小型企業乙,并約定從該店經營的利潤中,首先保證企業乙的全體職工每月最低生活費的開支3 600元后,逐步償還轉讓費(不計息).在甲提供的資料中:①這種消費品的進價為每件14元;②該店月銷量Q(百件)與銷售價格P(元)的關系如圖所示;③每月需各種開支2 000元.
(1)當商品的價格為每件多少元時,月利潤扣除職工最低生活費的余額最大?并求最大余額;
(2)企業乙只依靠該店,最早可望在幾年后脫貧?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了得到函數y=2x-3-1的圖象,只需把函數y=2x的圖象上所有的點( )
A. 向右平移3個單位長度,再向下平移1個單位長度
B. 向左平移3個單位長度,再向下平移1個單位長度
C. 向右平移3個單位長度,再向上平移1個單位長度
D. 向左平移3個單位長度,再向上平移1個單位長度
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公司生產一批產品需要原材料500噸,每噸原材料可創造利潤12萬元,該公司通過設備升級,生產這批
產品所需原材料減少了
噸,且每噸原材料創造的利潤提高了
;若將少用的
噸原材料全部用于生產公司新開發的
產品,每噸原材料創造的利潤為
萬元,其中
.
(1)若設備升級后生產這批產品的利潤不低于原來生產該批
產品的利潤,求
的取值范圍;
(2)若生產這批產品的利潤始終不高于設備升級后生產這批
產品的利潤,求
的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在學校開展的綜合實踐活動中,某班進行了小制作評比,作品上交時間為5月1日至30日,評委會把同學們上交作品的件數按照5天一組分組統計,繪制了頻率分布直方圖(如圖所示).已知從左到右各長方形的高的比為2:3:4:6:4:1,第三組的頻數為12,請解答下列各題.
(1)本次活動共有多少件作品參加評比?
(2)哪組上交的作品數量最多?有多少件?
(3)經過評比,第四組和第六組分別有10件2件作品獲獎,問這兩組哪一組獲獎率較高?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的焦距為2,離心率為
,
軸上一點
的坐標為
.
(Ⅰ)求該橢圓的方程;
(Ⅱ)若對于直線,橢圓
上總存在不同的兩點
與
關于直線
對稱,且
,求
實數的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c,且acosC+ccosA=2bcosA.
(1)求角A的值;
(2)若,
,求△ABC的面積S.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在某次測驗中,有6位同學的平均成績為75分, 用xn表示編號為n(n=1,2,…,6)的同學所得成績,且前5位同學的成績如下:
編號n | 1 | 2 | 3 | 4 | 5 |
成績xn | 70 | 76 | 72 | 70 | 72 |
(1)求第6位同學的成績x6,及這6位同學成績的標準差s;
(2)從前5位同學中選2位同學,求恰有1位同學成績在區間(68,75)中的概率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com