【題目】新冠病毒是一種通過飛沫和接觸傳播的變異病毒,為篩查該病毒,有一種檢驗方式是檢驗血液樣本相關指標是否為陽性,對于份血液樣本,有以下兩種檢驗方式:一是逐份檢驗,則需檢驗
次.二是混合檢驗,將其中
份血液樣本分別取樣混合在一起,若檢驗結果為陰性,那么這
份血液全為陰性,因而檢驗一次就夠了;如果檢驗結果為陽性,為了明確這
份血液究竟哪些為陽性,就需要對它們再逐份檢驗,此時
份血液檢驗的次數總共為
次.某定點醫院現取得4份血液樣本,考慮以下三種檢驗方案:方案一,逐個檢驗;方案二,平均分成兩組檢驗;方案三,四個樣本混在一起檢驗.假設在接受檢驗的血液樣本中,每份樣本檢驗結果是陽性還是陰性都是相互獨立的,且每份樣本是陰性的概率為
.
(Ⅰ)求把2份血液樣本混合檢驗結果為陽性的概率;
(Ⅱ)若檢驗次數的期望值越小,則方案越“優”.方案一、二、三中哪個最“優”?請說明理由.
【答案】(Ⅰ);(Ⅱ)選擇方案三最“優”,理由見解析
【解析】
(Ⅰ)根據獨立事件和對立事件概率公式可計算求得結果;
(Ⅱ)確定方案二和方案三檢驗次數所有可能的取值,并求得每個取值對應的概率,進而得到分布列,由數學期望的計算公式計算得到期望,與方案一的期望進行比較,得到最優方案.
(Ⅰ)該混合樣本陰性的概率為:,
根據對立事件原理,陽性的概率為:.
(Ⅱ)方案一:逐個檢驗,檢驗次數為.
方案二:由(Ⅰ)知,每組個樣本檢驗時,若陰性則檢驗次數為
,概率為
;
若陽性則檢驗次數為,概率為
,
設方案二的檢驗次數記為,則
的可能取值為
,
;
;
,
則的分布列如下:
可求得方案二的期望為.
方案三:混在一起檢驗,設方案三的檢驗次數記為,
的可能取值為
,
,
,
,
則的分布列如下:
可求得方案三的期望為.
比較可得,故選擇方案三最“優”.
科目:高中數學 來源: 題型:
【題目】已知某校6個學生的數學和物理成績如下表:
學生的編號 | 1 | 2 | 3 | 4 | 5 | 6 |
數學 | 89 | 87 | 79 | 81 | 78 | 90 |
物理 | 79 | 75 | 77 | 73 | 72 | 74 |
(1)若在本次考試中,規定數學在80分以上(包括80分)且物理在75分以上(包括75分)的學生為理科小能手.從這6個學生中抽出2個學生,設表示理科小能手的人數,求
的分布列和數學期望;
(2)通過大量事實證明發現,一個學生的數學成績和物理成績具有很強的線性相關關系,在上述表格是正確的前提下,用表示數學成績,用
表示物理成績,求
與
的回歸方程.
參考數據和公式:,其中
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C:經過定點
,其左右集點分別為
,
且
,過右焦
且與坐標軸不垂直的直線l與橢圈交于P,Q兩點.
(1)求橢圓C的方程:
(2)若O為坐標原點,在線段上是否存在點
,使得以
,
為鄰邊的平行四邊形是菱形?若存在,求出m的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】過拋物線上點
作三條斜率分別為
,
,
的直線
,
,
,與拋物線分別交于不同于
的點
.若
,
,則以下結論正確的是( )
A.直線過定點B.直線
斜率一定
C.直線斜率一定D.直線
斜率一定
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C的中心在坐標原點,焦點在x軸上,它的一個頂點恰好是拋物線的焦點,離心率為
.
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)過橢圓C的右焦點F作直線l交橢圓C于A、B兩點,交y軸于M點,若,
,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某圓柱的高為2,底面周長為16,其三視圖如圖所示,圓柱表面上的點在正視圖上的對應點為
,圓柱表面上的點
在左視圖上的對應點為
,則在此圓柱側面上,從
到
的路徑中,最短路徑的長度為( )
A. B.
C.
D. 2
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,已知直線
的參數方程:
(
為參數),以原點為極點,
軸非負半軸為極軸(取相同單位長度)建立極坐標系,圓
的極坐標方程為:
.
(1)將直線的參數方程化為普通方程,圓
的極坐標方程化為直角坐標方程;
(2)求圓上的點到直線
的距離的最小值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com