【題目】設函數f(x)=2cos2x+ sin2x﹣1.
(1)求f(x)的最大值及此時的x值
(2)求f(x)的單調減區間
(3)若x∈[﹣ ,
]時,求f(x)的值域.
【答案】
(1)解:f(x)=2cos2x+ sin2x﹣1=cos2x+
=
,
當2x+ ,即
時,f(x)max=2
(2)解:由 ,得
,
∴f(x)的單調減區間為[ ],k∈Z
(3)解: ,
由 ,得
,
∴ ,
∴﹣1≤f(x)≤2.
則f(x)的值域為[﹣1,2]
【解析】f(x)=2cos2x+ sin2x﹣1=cos2x+
=
(1)當2x+
,即
時,f(x)取得最大值;(2)由
,得
,即可求出f(x)的單調減區間;(3)由
,得
,即可求出f(x)的值域.
【考點精析】本題主要考查了正弦函數的單調性和三角函數的最值的相關知識點,需要掌握正弦函數的單調性:在上是增函數;在
上是減函數;函數
,當
時,取得最小值為
;當
時,取得最大值為
,則
,
,
才能正確解答此題.
科目:高中數學 來源: 題型:
【題目】根據下列條件,分別求直線方程:
(1)經過點A(3,0)且與直線2x+y﹣5=0垂直;
(2)求經過直線x﹣y﹣1=0與2x+y﹣2=0的交點,且平行于直線x+2y﹣3=0的直線方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=ax2+lnx(a∈R).
(1)當a=時,求f(x)在區間[1,e]上的最大值和最小值;
(2)如果函數g(x),f1(x),f2(x),在公共定義域D上,滿足f1(x)<g(x)<f2(x),那么就稱g(x)為f1(x),f2(x)的“活動函數”.已知函數.
。若在區間(1,+∞)上,函數f(x)是f1(x),f2(x)的“活動函數”,求a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知a,b,c分別為△ABC三個內角A,B,C的對邊,c= asinC﹣ccosA.
(1)求A;
(2)若a=2,△ABC的面積為 ,求b,c.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設集合A={x|2﹣5≤2﹣x≤4},B={x|x2+2mx﹣3m2<0,m>0}.
(1)若m=2,求A∩B;
(2)若BA,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某學校高三年級有學生500人,其中男生300人,女生200人,為了研究學生的數學成績是否與性別有關,現采用分層抽樣的方法,從中抽取了100名學生,先統計了他們期中考試的數學分數,然后按性別分為男、女兩組,再將兩組學生的分數分成5組:[100,110),[110,120),[120,130),[130,140),[140,150]分別加以統計,得到如圖所示的頻率分布直方圖.
附:K2= .
(1)從樣本中分數小于110分的學生中隨機抽取2人,求兩人恰好為一男一女的概率;
(2)若規定分數不小于130分的學生為“數學尖子生”,請你根據已知條件完成2×2列聯表,并判斷是否有90%的把握認為“數學尖子生與性別有關”?
P(K2≥k0) | 0.100 | 0.050 | 0.010 | 0.001 |
k0 | 2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】四棱錐P﹣ABCD中,底面ABCD為矩形,PA⊥平面ABCD,E為PD的中點.
(1)證明:PB∥平面AEC;
(2)設AP=1,AD= ,三棱錐P﹣ABD的體積V=
,求二面角D﹣AE﹣C的大小.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公司為確定下一年度投入某種產品的宣傳費,需了解年宣傳費(單位:千元)對年銷售量
(單位:
)和年利潤
(單位:千元)的影響.對近8年的年宣傳費
和年銷售量
數據作了初步處理,得到下面的散點圖及一些統計量的值.
表中.
(1)根據散點圖判斷與
哪一個適宜作為年銷售量
關于年宣傳費
的回歸類型?(給出判斷即可,不必說明理由)
(2)根據(1)的判斷結果及表中數據,建立關于
的回歸方程;
(3)已知這種產品的利潤與
的的關系為
.根據(2)的結果回答下列問題:
(ⅰ)年宣傳費時,年銷售量及年利潤的預報值是多少?
(ⅱ)年宣傳費為何值時,年利潤的預報值最大?
附:對于一組數據,其回歸直線
的的斜率和截距的最小二乘估計為
.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com