【題目】已知定義域為R的函數f(x)=是奇函數.
(1)求a,b的值;
(2)判斷函數f(x)的單調性,并用定義證明;
(3)若對于任意都有f(kx2)+f(2x﹣1)>0成立,求實數k的取值范圍.
【答案】解:(1)因為f(x)是奇函數,所以f(0)=0=0,解得b=1,
f(x)=,又由f(1)=﹣f(﹣1)
=
,解得a=2.
(2)證明:由(1)可得:f(x)==
.
x1<x2 , ∴>0,
則f(x1)﹣f(x2)==
>0,
∴f(x1)>f(x2).
∴f(x)在R上是減函數.
(3)∵函數f(x)是奇函數.
∴f(kx2)+f(2x﹣1)>0成立,等價于f(kx2)>﹣f(2x﹣1)=f(1﹣2x)成立,
∵f(x)在R上是減函數,∴kx2<1﹣2x,
∴對于任意都有kx2<1﹣2x成立,
∴對于任意都有k<
,
設g(x)=,
∴g(x)==
,
令t=,t∈[
,2],
則有,
,∴g(x)min=g(t)min=g(1)=﹣1
∴k<﹣1,即k的取值范圍為(﹣∞,﹣1)
【解析】(1)直接根據函數是奇函數,滿足f(﹣x)=﹣f(x),把x=0,和x=1代入,即可得到關于a,b的兩個等式,解方程組求出a,b的值.
(2)利用減函數的定義即可證明.
(3))f(kx2)+f(2x﹣1)>0成立,等價于f(kx2)>﹣f(2x﹣1)=f(1﹣2x),即k<成立,設g(x)=
,
換元使之成為二次函數,再求最小值.
科目:高中數學 來源: 題型:
【題目】某車間計劃每天生產卡車模型、賽車模型、小汽車模型這三種玩具共100個,已知生產一個卡車模型需5分鐘,生產一個賽車模型需7分鐘,生產一個小汽車模型需4分鐘,且生產一個卡車模型可獲利潤8元,生產一個賽車模型可獲利潤9元,生產一個小汽車模型可獲利潤6元.若總生產時間不超過10小時,該公司合理分配生產任務使每天的利潤最大,則最大利潤是______________元.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,正方體ABCD﹣A1B1C1D1的棱長為8cm,M,N,P分別是AB,A1D1 , BB1的中點.
(1)畫出過M,N,P三點的平面與平面A1B1C1D1的交線以及與平面BB1C1C的交線;
(2)設過M,N,P三點的平面與B1C1交于Q,求PQ的長.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
已知曲線的極坐標方程為
,以極點為原點,極軸為
軸的正半軸,建立平面直角坐標系,直線
的參數方程為
(
為參數).
(1)判斷直線與曲線
的位置關系,并說明理由;
(2)若直線和曲線
相交于
兩點,且
,求直線
的斜率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在平面直角坐標系中,曲線
的方程為
,在以原點為極點,
軸的非負關軸為極軸的極坐標系中,直線
的極坐標方程為
.
(1)將上的所有點的橫坐標和縱坐標分別伸長到原來的2倍和
倍后得到曲線
,求曲線
的參數方程;
(2)若分別為曲線
與直線
的兩個動點,求
的最小值以及此時點
的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列命題中
①函數f(x)=( )x的遞減區間是(﹣∞,+∞)
②已知函數f(x)的定義域為(0,1),則函數f(x+1)的定義域為(1,2);
③已知(x,y)映射f下的象是(x+y,x﹣y),那么(4,2)在f下的原象是(3,1).
其中正確命題的序號為 .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com