【題目】某車間計劃每天生產卡車模型、賽車模型、小汽車模型這三種玩具共100個,已知生產一個卡車模型需5分鐘,生產一個賽車模型需7分鐘,生產一個小汽車模型需4分鐘,且生產一個卡車模型可獲利潤8元,生產一個賽車模型可獲利潤9元,生產一個小汽車模型可獲利潤6元.若總生產時間不超過10小時,該公司合理分配生產任務使每天的利潤最大,則最大利潤是______________元.
科目:高中數學 來源: 題型:
【題目】某校從高一年級學生中隨機抽取40名中學生,將他們的期中考試數學成績(滿分100分,成績均為不低于40分的整數)分成六段: ,
,…,
,得到如圖所示的頻率分布直方圖.
(1)求圖中實數的值;
(2)若該校高一年級共有640人,試估計該校高一年級期中考試數學成績不低于60分的人數;
(3)若從數學成績在與
兩個分數段內的學生中隨機選取2名學生,求這2名學生的數學成績之差的絕對值不大于10的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某市春節期間7家超市的廣告費支出(萬元)和銷售額
(萬元)數據如下:
超市 | A | B | C | D | E | F | G |
廣告費支出 | 1 | 2 | 4 | 6 | 11 | 13 | 19 |
銷售額 | 19 | 32 | 40 | 44 | 52 | 53 | 54 |
(1)若用線性回歸模型擬合與
的關系,求
關于
的線性回歸方程;
(2)用二次函數回歸模型擬合與
的關系,可得回歸方程:
,
經計算二次函數回歸模型和線性回歸模型的分別約為
和
,請用
說明選擇哪個回歸模型更合適,并用此模型預測
超市廣告費支出為3萬元時的銷售額.
參數數據及公式:,
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓:
和點
,動圓
經過點
且與圓
相切,圓心
的軌跡為曲線
.
(1)求曲線的方程;
(2)點是曲線
與
軸正半軸的交點,點
,
在曲線
上,若直線
,
的斜率分別是
,
,滿足
,求
面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在直角坐標系中,直線
的方程為
,曲線
的參數方程為
(
為參數).
(1)已知在極坐標系(與直角坐標系取相同的長度單位,且以原點
為極點,以
軸正半軸為極軸)中,點
的極坐標為
,判斷點
與曲線
的位置關系;
(2)設點是曲線
上的一個動點,求它到直線
的距離的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=的定義域為A,集合B={x|(x﹣m﹣3)(x﹣m+3)≤0}.
(1)求A和f(x)的值域C;
(2)若A∩B=[2,3],求實數m的值;
(3)若CRB,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】全世界人們越來越關注環境保護問題,某監測站點于2016年8月某日起連續天監測空氣質量指數(
),數據統計如下:
(1)根據所給統計表和頻率分布直方圖中的信息求出的值,并完成頻率分布直方圖;
(2)由頻率分布直方圖求該組數據的平均數與中位數;
(3)在空氣質量指數分別屬于和
的監測數據中,用分層抽樣的方法抽取5天,再從中任意選取2天,求事件
“兩天空氣都為良”發生的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知定義域為R的函數f(x)=是奇函數.
(1)求a,b的值;
(2)判斷函數f(x)的單調性,并用定義證明;
(3)若對于任意都有f(kx2)+f(2x﹣1)>0成立,求實數k的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com