【題目】在四面體中,已知
,
.
(1)當(dāng)四面體體積最大時(shí),求的值;
(2)當(dāng)時(shí),設(shè)四面體
的外接球球心為
,求
和平面
所成夾角的正弦值.
【答案】(1);(2)
.
【解析】
(1)取中點(diǎn)
,連接
,
,過點(diǎn)
作
,由題意可知當(dāng)
平面
時(shí),四面體的面積最大,求出此時(shí)的
的值即可得解;
(2)在線段上取
,使
,
為
的內(nèi)心,過
作
平面
,則球心在直線
上,設(shè)
,球的半徑為
,由勾股定理求得
后,由
即可得解.
(1)取中點(diǎn)
,連接
,
,過點(diǎn)
作
,
由可得
,
,
,
由可得
平面
,
又平面
,所以平面
平面
,所以
平面
,
即即為四面體的高,由
,可知當(dāng)
平面
四面體面積最大,
此時(shí)即
的值為
;
(2)當(dāng)時(shí),
,則
為
的中點(diǎn),
所以,
,
在線段上取
,使
,易知
為
的內(nèi)心,
,
過作
平面
,則球心在直線
上,
球心為,過點(diǎn)
作
,連接
,
,則
,
設(shè),球的半徑為
,則
,
則,
,
所以,解得
,
所以,
,
,
設(shè)和平面
所成夾角為
,
由平面
可知
,
所以和平面
所成夾角的正弦值為
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知曲線的參數(shù)方程為:
(
為參數(shù)),
的參數(shù)方程為:
(
為參數(shù)).
(1)化、
的參數(shù)方程為普通方程,并說(shuō)明它們分別表示什么曲線;
(2)若直線的極坐標(biāo)方程為:
,曲線
上的點(diǎn)
對(duì)應(yīng)的參數(shù)
,曲線
上的點(diǎn)
對(duì)應(yīng)的參數(shù)
,求
的中點(diǎn)
到直線
的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)在
上單調(diào)遞增,求實(shí)數(shù)
的取值范圍;
(2)若函數(shù)有兩個(gè)不同的零點(diǎn)
.
(ⅰ)求實(shí)數(shù)的取值范圍;
(ⅱ)求證:.(其中
為
的極小值點(diǎn))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正方體的棱長(zhǎng)為1,P是空間中任意一點(diǎn),下列正確命題的個(gè)數(shù)是( )
①若P為棱中點(diǎn),則異面直線AP與CD所成角的正切值為
;
②若P在線段上運(yùn)動(dòng),則
的最小值為
;
③若P在半圓弧CD上運(yùn)動(dòng),當(dāng)三棱錐的體積最大時(shí),三棱錐
外接球的表面積為
;
④若過點(diǎn)P的平面與正方體每條棱所成角相等,則
截此正方體所得截面面積的最大值為
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平行四邊形中,
,
,
,
是EA的中點(diǎn)(如圖1),將
沿CD折起到圖2中
的位置,得到四棱錐是
.
(1)求證:平面PDA;
(2)若PD與平面ABCD所成的角為.且
為銳角三角形,求平面PAD和平面PBC所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了政府對(duì)過熱的房地產(chǎn)市場(chǎng)進(jìn)行調(diào)控決策,統(tǒng)計(jì)部門對(duì)城市人和農(nóng)村人進(jìn)行了買房的心理預(yù)期調(diào)研,用簡(jiǎn)單隨機(jī)抽樣的方法抽取110人進(jìn)行統(tǒng)計(jì),得到如下列聯(lián)表:
買房 | 不買房 | 糾結(jié) | |
城市人 | 5 | 15 | |
農(nóng)村人 | 20 | 10 |
已知樣本中城市人數(shù)與農(nóng)村人數(shù)之比是3:8.
分別求樣本中城市人中的不買房人數(shù)和農(nóng)村人中的糾結(jié)人數(shù);
用獨(dú)立性檢驗(yàn)的思想方法說(shuō)明在這三種買房的心理預(yù)期中哪一種與城鄉(xiāng)有關(guān)?
參考公式:.
k |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列的前
項(xiàng)和為
,
(
為常數(shù))對(duì)于任意的
恒成立.
(1)若,求
的值;
(2)證明:數(shù)列是等差數(shù)列;
(3)若,關(guān)于
的不等式
有且僅有兩個(gè)不同的整數(shù)解,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn),
分別在
軸,
軸上運(yùn)動(dòng),
,點(diǎn)
在線段
上,且
.
(1)求點(diǎn)的軌跡
的方程;
(2)直線與
交于
,
兩點(diǎn),
,若直線
,
的斜率之和為2,直線
是否恒過定點(diǎn)?若是,求出定點(diǎn)的坐標(biāo);若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,直線
的參數(shù)方程為
(
為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),
軸的非負(fù)半軸為極軸且取相同的單位長(zhǎng)度建立極坐標(biāo)系,圓
的極坐標(biāo)方程為
.
(1)求直線的普通方程與圓
的直角坐標(biāo)方程;
(2)設(shè)動(dòng)點(diǎn)在圓
上,動(dòng)線段
的中點(diǎn)
的軌跡為
,
與直線
交點(diǎn)為
,且直角坐標(biāo)系中,
點(diǎn)的橫坐標(biāo)大于
點(diǎn)的橫坐標(biāo),求點(diǎn)
的直角坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com