日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
7.已知圓C1:(x+2)2+(y-1)2=4與圓C2:(x-3)2+(y-4)2=4,過點P(-1,5)作兩條互相垂直的直線l1:y=k(x+1)+5,l2:y=-$\frac{1}{k}$(x+1)+5.
(1)若k=2時,設l1與圓C1交于A、B兩點,求經過A、B兩點面積最小的圓的方程.
(2)若l1與圓C1相交,求證:l2與圓C2相交,且l1被圓C1截得的弦長與l2被圓C2截得的弦長相等.
(3)是否存在點Q,過Q的無數多對斜率之積為1的直線l3,l4,l3被圓C1截得的弦長與l4被圓C2截得的弦長相等.若存在求Q的坐標,若不存在,說明理由.

分析 (1)經過A、B兩點面積最小的圓應是以AB為直徑的圓;
(2)證明l2與圓C2相交,利用兩圓的半徑相等,而兩弦心距相等,可得所截得的弦長相等;
(3)由d3=d4得|1-b+m(a+2)|=|a-3+m(4-b)|∴1-b+m(a+2)=a-3+m(4-b)(1)或1-b+m(a+2)=3-a+m(b-4)(2),(1)(2)對于無數多個m的值都成立.$\left\{\begin{array}{l}1-b=a-3\\ a+2=4-b\end{array}\right.$(3)或$\left\{\begin{array}{l}1-b=3-a\\ a+2=b-4\end{array}\right.$(4),(3)(4)都無解,即可得出結論.

解答 解:(1)當k=2時,l1的方程為y=2x+7
聯立方程組$\left\{\begin{array}{l}{(x+2)^2}+{(y-1)^2}=4\\ y=2x+7\end{array}\right.$,整理得5x2+28x+36=0
設A、B為A(x1,y1),B(x2,y2)∴${x_1}+{x_2}=-\frac{28}{5}$,${x_1}{x_2}=\frac{36}{5}$,${y_1}+{y_2}=\frac{14}{5}$,${y_1}{y_2}=-\frac{3}{5}$,
經過A、B兩點面積最小的圓應是以AB為直徑的圓,
圓的方程為(x-x1)(x-x2)+(y-y1)(y-y2)=0.
即x2+y2-(x1+x2)x-(y1+y2)y+x1x2+y1y2=0
所求圓的方程:${x^2}+{y^2}+\frac{28}{5}x-\frac{14}{5}y+\frac{33}{5}=0$…(4分)
(2)設圓C1的圓心到l1的距離為d1,圓C2的圓心到l2的距離為d2,則${d_1}=\frac{{|{k-4}|}}{{\sqrt{1+{k^2}}}}<2$${d_2}=\frac{{|{\frac{4}{k}-1}|}}{{\sqrt{1+\frac{1}{k_2}}}}=\frac{{|{k-4}|}}{{\sqrt{1+{k^2}}}}={d_1}<2$,
∴l2與圓C2相交,
∵兩圓的半徑相等,而兩弦心距相等,
∴所截得的弦長相等.
(3)設Q(a,b)?3的方程為y=m(x-a)+b.l4的方程為$y=\frac{1}{m}(x-a)+b$,
依題意圓C1的圓心到l3的距離為${d_3}=\frac{{|{1-b+m(a+2)}|}}{{\sqrt{1+{m^2}}}}$,${d_4}=\frac{{|{4-b-\frac{1}{m}(3-a)}|}}{{\sqrt{1+\frac{1}{m^2}}}}=\frac{{|{a-3+m(4-b)}|}}{{\sqrt{1+{m^2}}}}$
由d3=d4得|1-b+m(a+2)|=|a-3+m(4-b)|∴1-b+m(a+2)=a-3+m(4-b)(1)
或1-b+m(a+2)=3-a+m(b-4)(2)
(1)(2)對于無數多個m的值都成立∴$\left\{\begin{array}{l}1-b=a-3\\ a+2=4-b\end{array}\right.$(3)或$\left\{\begin{array}{l}1-b=3-a\\ a+2=b-4\end{array}\right.$(4)
(3)(4)都無解∴Q不存在…(12分)

點評 本題考查圓的方程,考查直線與圓的位置關系,考查學生分析解決問題的能力,難度大.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

17.若點P在$-\frac{4}{3}π$角的終邊上,且P的坐標為(-1,y),則y等于(  )
A.$-\sqrt{3}$B.$\sqrt{3}$C.$-\frac{{\sqrt{3}}}{3}$D.$\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

18.已知△ABC中,內角A、B、C的對邊分別是a、b、c,a=1,c=$\sqrt{3}$,∠A=30°,則b等于1或2.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

15.設命題p:?x∈R,x2-2(m-3)x+1=0,命題q:?x∈R,x2-2(m+5)x+3m+19≠0
(1)若p∨q為真命題,且p∧q為假命題,求實數m的取值范圍
(2)若p∧q為假命題,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

2.已知集合M={f(x)|f2(x)-f2(y)=f(x+y)f(x-y),x,y∈R},有下列命題
①若f(x)=$\left\{\begin{array}{l}{1,x≥0}\\{-1,x<0}\end{array}\right.$,則f(x)∈M;
②若f(x)=2x,則f(x)∈M;
③f(x)∈M,則y=f(x)的圖象關于原點對稱;
④f(x)∈M,則對于任意實數x1,x2(x1≠x2),總有$\frac{{f}_{\;}({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0成立;
其中所有正確命題的序號是②③.(寫出所有正確命題的序號)

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

12.已知函數f(x)=$\frac{ax+b}{x+1}$在(-1,+∞)是增函數.
(1)當b=1時,求a的取值范圍.
(2)若g(x)=f(x)-1008沒有零點,f(1)=0,求f(-3)的值.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

19.已知i為虛數單位,則?$\frac{-2i}{1+i}$?=(  )
A.1+iB.1C.$\sqrt{2}$D.2

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

16.設復數z滿足(z+i)i=-3+4i(i為虛數單位),則z的模為$2\sqrt{5}$.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

20.過雙曲線$\frac{x^2}{4}$-$\frac{y^2}{2}$=1的右焦點F作直線l交雙曲線于A?B兩點,若|AB|=5,則這樣的直線l有(  )
A.1條B.2條C.3條D.4條

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 成人在线精品 | 精品久久久久一区二区国产 | 久久二 | 一级毛片在线视频 | 欧美视频一区二区 | 韩国精品主播一区二区在线观看 | 男人的天堂免费 | 久久成人精品视频 | 精品视频久久 | 一级片在线观看 | 蜜桃久久久久久久 | 99久久久国产精品 | 日韩在线国产精品 | 99爱在线观看 | 日韩电影免费观 | jizzjizz亚洲中国少妇 | 高清精品自拍亚洲 | 先锋影音在线观看 | 亚洲成人一区 | 日韩大片免费看 | 九九人人 | 一区二区三区精品视频 | 日韩精品一区二区在线 | 欧洲毛片| 一区二区三区国产好 | 色噜噜狠狠狠综合曰曰曰 | 国产精品免费观看 | 国产日韩欧美一区二区在线观看 | 青青草视频在线观看 | 毛片国产 | 狠狠干影院 | 视频精品一区二区三区 | 狠狠的干| 国产区视频在线观看 | 国产精品成人一区二区三区 | 欧美一级在线视频 | 狠狠爱天天干 | 欧美高清一区 | 国产一区不卡 | 国产一级特黄毛片在线毛片 | 欧美涩涩网 |