【題目】某服裝加工廠為了提高市場競爭力,對其中一臺生產設備提出了甲、乙兩個改進方案:甲方案是引進一臺新的生產設備,需一次性投資1000萬元,年生產能力為30萬件;乙方案是將原來的設備進行升級改造,需一次性投入700萬元,年生產能力為20萬件.根據市場調查與預測,該產品的年銷售量的頻率分布直方圖如圖所示,無論是引進新生產設備還是改造原有的生產設備,設備的使用年限均為6年,該產品的銷售利潤為15元/件(不含一次性設備改進投資費用).
(1)根據年銷售量的頻率分布直方圖,估算年銷量的平均數(同一組中的數據用該組區間的中點值作代表);
(2)將年銷售量落入各組的頻率視為概率,各組的年銷售量用該組區間的中點值作年銷量的估計值,并假設每年的銷售量相互獨立.
①根據頻率分布直方圖估計年銷售利潤不低于270萬元的概率:
②若以該生產設備6年的凈利潤的期望值作為決策的依據,試判斷該服裝廠應選擇哪個方案.(6年的凈利潤=6年銷售利潤-設備改進投資費用)
【答案】(1)19.8萬件(2)①0.6 ②乙方案.
【解析】
(1)利用小矩形的中點乘以小矩形的面積之和,從而求得平均數;
(2)①由題意得只有當年銷售量不低于18萬件時年銷售利潤才不低于270萬,再從頻率分布直方圖中,估計年銷售利潤不低于270萬的概率;
②分別計算兩種方案6年的凈利潤的期望值,再比較大小,從而得到結論。
(1)年銷量的平均數(萬件).
(2)①該產品的銷售利潤為15元/件,
由題意得只有當年銷售量不低于18萬件時年銷售利潤才不低于270萬,
所以年銷售利潤不低于270萬的概率.
②設甲方案的年銷售量為X萬件,由(1)可知甲方案的年銷售量的期望,
所以甲方案6年的凈利潤的期望值為(萬元).
設乙方案的年銷售量為Y萬件,則乙方案的年銷售量的分布列為
Y | 12 | 16 | 20 |
P | 0.05 | 0.35 | 0.6 |
所以乙方案的年銷售量期望(萬件),
所以乙方案6年的凈利潤的期望值為(萬元),
因為乙方案的凈利潤的期望值大于甲方案的凈利潤的期望值,
所以企業應該選擇乙方案.
科目:高中數學 來源: 題型:
【題目】設數列滿足
,
,
.
(1)求證:數列為等比數列;
(2)對于大于的正整數
、
(其中
),若
、
、
三個數經適當排序后能構成等差數列,求符合條件的數組
;
(3)若數列滿足
,是否存在實數
,使得數列
是單調遞增數列?若存在,求出
的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列的各項均為正數,且
,對于任意的
,均有
,
.
(1)求證:是等比數列,并求出
的通項公式;
(2)若數列中去掉
的項后,余下的項組成數列
,求
;
(3)設,數列
的前
項和為
,是否存在正整數
,使得
、
、
成等比數列,若存在,求出
的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,曲線C的參數方程為(
為參數),以平面直角坐標系的原點O為極點,x軸正半軸為極軸建立極坐標系.
(1)求曲線C的極坐標方程;
(2)過點,傾斜角為
的直線l與曲線C相交于M,N兩點,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】“干支紀年法”是中國歷法上自古以來使用的紀年方法,甲、乙、丙、丁、戊、己、庚、辛、壬、癸被稱為“十天干”,子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥叫做“十二地支”。“天干”以“甲”字開始,“地支”以“子”字開始,兩者按干支順序相配,組成了干支紀年法,其相配順序為:甲子、乙丑、丙寅…癸酉,甲戌、乙亥、丙子…癸未,甲申、乙酉、丙戌…癸巳,…,共得到60個組合,稱六十甲子,周而復始,無窮無盡。2019年是“干支紀年法”中的己亥年,那么2026年是“干支紀年法”中的
A. 甲辰年B. 乙巳年C. 丙午年D. 丁未年
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,其導函數設為
.
(Ⅰ)求函數的單調區間;
(Ⅱ)若函數有兩個極值點
,
,試用
表示
;
(Ⅲ)在(Ⅱ)的條件下,若的極值點恰為
的零點,試求
,
這兩個函數的所有極值之和的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知表示不小于x的最小整數,例如
.
(1)設,
,若
,求實數m的取值范圍;
(2)設,
在區間
(
)上的值域為
,求集合
中元素的個數;
(3)設(
),
,若對于
,
,都有
,求實數a的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com