【題目】【選修4-4:坐標(biāo)系與參數(shù)方程】
在直角坐標(biāo)系中,以原點(diǎn)
為極點(diǎn),
軸的正半軸為極軸建立極坐標(biāo)系,直線
的參數(shù)方程為
(
為參數(shù)),曲線
的極坐標(biāo)方程為
.
(1)寫(xiě)出直線的普通方程和曲線
的直角坐標(biāo)方程;
(2)若點(diǎn)的坐標(biāo)為
,直線
與曲線
交于
,
兩點(diǎn),求
的值.
【答案】(1) ,
(2)8
【解析】試題分析:(1)消去參數(shù),得直線
的普通方程,兩邊同乘
得
,即
;
(2)直線的參數(shù)方程的標(biāo)準(zhǔn)形式為
(
為參數(shù))與曲線
聯(lián)立得:
,設(shè)
,
所對(duì)應(yīng)參數(shù)分別為
,
,則
利用韋達(dá)定理即可得解.
試題解析:
(1)由(
為參數(shù))消去參數(shù)
,得直線
的普通方程為
,
由,兩邊同乘
得
,即
,
故曲線的直角坐標(biāo)方程為
.
(2)在(
為參數(shù))中,令
,
得直線的參數(shù)方程的標(biāo)準(zhǔn)形式為
(
為參數(shù)),
代入曲線:
,整理得:
,
設(shè),
所對(duì)應(yīng)參數(shù)分別為
,
,則
,
,
所以,.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,直線AM,BM相交于點(diǎn)M,且直線AM的斜率與直線BM的斜率的差是
,則點(diǎn)M的軌跡C的方程是___________.若點(diǎn)
為軌跡C的焦點(diǎn),
是直線
上的一點(diǎn),
是直線
與軌跡
的一個(gè)交點(diǎn),且
,則
_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在中,
,且
,若以
為左右焦點(diǎn)的橢圓
經(jīng)過(guò)點(diǎn)
.
(1)求的標(biāo)準(zhǔn)方程;
(2)設(shè)過(guò)右焦點(diǎn)且斜率為
的動(dòng)直線與
相交于
兩點(diǎn),探究在
軸上是否存在定點(diǎn)
,使得
為定值?若存在,試求出定值和點(diǎn)
的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中
為自然對(duì)數(shù)的底數(shù).
(1)若在
處取到極小值,求
的值及函數(shù)
的單調(diào)區(qū)間;
(2)若當(dāng)時(shí),
恒成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓:
,過(guò)
且與圓
相切的動(dòng)圓圓心為
.
(1)求點(diǎn)的軌跡
的方程;
(2)設(shè)過(guò)點(diǎn)的直線
交曲線
于
,
兩點(diǎn),過(guò)點(diǎn)
的直線
交曲線
于
,
兩點(diǎn),且
,垂足為
(
,
,
,
為不同的四個(gè)點(diǎn)).
①設(shè),證明:
;
②求四邊形的面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(1)求證:函數(shù)是偶函數(shù);
(2)當(dāng)求函數(shù)
在
上的最大值和最小值;
(3)若對(duì)于任意的實(shí)數(shù)恒有
求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) (
是常數(shù)),
(1)求函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)時(shí),函數(shù)
有零點(diǎn),求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,直線
的方程是
,曲線
的參數(shù)方程是
(
為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),
軸的正半軸為極軸建立極坐標(biāo)系.
(1)求直線與曲線
的極坐標(biāo)方程;
(2)若射線與曲線
交于點(diǎn)
,與直線
交于點(diǎn)
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖(1),五邊形中,
.如圖(2),將
沿
折到
的位置,得到四棱錐
.點(diǎn)
為線段
的中點(diǎn),且
平面
.
(1)求證:平面平面
;
(2)若直線與
所成角的正切值為
,設(shè)
,求四棱錐
的體積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com