已知函數(shù)
.
(Ⅰ)若在
處的切線垂直于直線
,求該點(diǎn)的切線方程,并求此時(shí)函數(shù)
的單調(diào)區(qū)間;
(Ⅱ)若對(duì)任意的
恒成立,求實(shí)數(shù)
的取值范圍.
(Ⅰ) ,
的單調(diào)遞增區(qū)間是
;單調(diào)遞減區(qū)間是
和
;
(Ⅱ) 或
.
解析試題分析:(Ⅰ)通過(guò)切線垂直直線可以得到切線的斜率,解出,將
代入求出切點(diǎn)坐標(biāo),從而求出切線方程,令
和
分別求出函數(shù)的單調(diào)遞增區(qū)間和遞減區(qū)間;(Ⅱ)通過(guò)對(duì)
的討論,求出
在
上的最大值,令
,解出
的取值范圍.
試題解析:(Ⅰ) ,根據(jù)題意
,解得
,
此時(shí)切點(diǎn)坐標(biāo)是,故所求的切線方程是
,即
.
當(dāng)時(shí),
,
令,解得
,令
,解得
且
,故函數(shù)
的單調(diào)遞增區(qū)間是
;單調(diào)遞減區(qū)間是
和
. 5分
(Ⅱ) .
①若,則
在區(qū)間
上恒成立,
在區(qū)間
上單調(diào)遞增,函數(shù)
在區(qū)間
上的最大值為
; 7分
②若,則在區(qū)間
上
,函數(shù)單調(diào)遞減,在區(qū)間
上
,函數(shù)單調(diào)遞增,故函數(shù)
在區(qū)間
上的最大值為
,
中的較大者,
,故當(dāng)
時(shí),函數(shù)的最大值為
,當(dāng)
時(shí),函數(shù)的最大值為
; 9分
③當(dāng)時(shí),
在區(qū)間
上恒成立,函數(shù)
在區(qū)間
上單調(diào)遞減,函數(shù)的最大值為
. 11分
綜上可知,在區(qū)間上,當(dāng)
時(shí),函數(shù)
,當(dāng)
時(shí),函數(shù)
.
不等式對(duì)任意的
恒成立等價(jià)于在區(qū)間
上,
,故當(dāng)
時(shí),
,即
,解得
或
;當(dāng)
時(shí),
,即
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
預(yù)計(jì)某地區(qū)明年從年初開始的前個(gè)月內(nèi),對(duì)某種商品的需求總量
(萬(wàn)件)近似滿足:
N*,且
)
(1)寫出明年第個(gè)月的需求量
(萬(wàn)件)與月份
的函數(shù)關(guān)系式,并求出哪個(gè)月份的需求量超過(guò)
萬(wàn)件;
(2)如果將該商品每月都投放到該地區(qū)萬(wàn)件(不包含積壓商品),要保證每月都滿足供應(yīng),
應(yīng)至少為多少萬(wàn)件?(積壓商品轉(zhuǎn)入下月繼續(xù)銷售)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù).
(1)是否存在點(diǎn),使得函數(shù)
的圖像上任意一點(diǎn)P關(guān)于點(diǎn)M對(duì)稱的點(diǎn)Q也在函數(shù)
的圖像上?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(2)定義,其中
,求
;
(3)在(2)的條件下,令,若不等式
對(duì)
且
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知在
處取得極值。
(Ⅰ)證明:;
(Ⅱ)是否存在實(shí)數(shù),使得對(duì)任意
?若存在,求
的所有值;若不存在,說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù),其中
為正實(shí)數(shù),
.
(I)若是
的一個(gè)極值點(diǎn),求
的值;
(II)求的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù).
(1) 當(dāng)時(shí),求函數(shù)
的單調(diào)區(qū)間;
(2) 當(dāng)時(shí),函數(shù)
圖象上的點(diǎn)都在
所表示的平面區(qū)域內(nèi),求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù),點(diǎn)
為一定點(diǎn),直線
分別與函數(shù)
的圖象和
軸交于點(diǎn)
,
,記
的面積為
.
(I)當(dāng)時(shí),求函數(shù)
的單調(diào)區(qū)間;
(II)當(dāng)時(shí), 若
,使得
, 求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
函數(shù).
(1)當(dāng)時(shí),對(duì)任意
R,存在
R,使
,求實(shí)數(shù)
的取值范圍;
(2)若對(duì)任意
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù),
,
⑴求函數(shù)的單調(diào)區(qū)間;
⑵記函數(shù),當(dāng)
時(shí),
在
上有且只有一個(gè)極值點(diǎn),求實(shí)數(shù)
的取值范圍;
⑶記函數(shù),證明:存在一條過(guò)原點(diǎn)的直線
與
的圖象有兩個(gè)切點(diǎn)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com