【題目】如圖,在平面直角坐標系中,設點
,直線
:
,點
在直線
上移動,
是線段
與
軸的交點,過
、
分別作直線
、
,使
,
,
.
(1)求動點的軌跡
的方程;
(2)已知⊙:
,過拋物線
上一點
作兩條直線與⊙
相切于
、
兩點,若直線
在
軸上的截距為
,求
的最小值.
科目:高中數學 來源: 題型:
【題目】我國南宋數學家楊輝所著的詳解九章算術
一書中,用圖
的數表列出了一些正整數在三角形中的一種幾何排列,俗稱“楊輝三角形”,該數表的規律是每行首尾數字均為1,從第三行開始,其余的數字是它“上方”左右兩個數字之和
現將楊輝三角形中的奇數換成1,偶數換成0,得到圖
所示的由數字0和1組成的三角形數表,由上往下數,記第n行各數字的和為
,如
,
,
,
,
,則
A. 2 B. 4 C. 8 D. 16
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某批發市場一服裝店試銷一種成本為每件元的服裝規定試銷期間銷售單價不低于成本單價,且獲利不得高于成本的
,經試銷發現銷售量
(件)與銷售單價
(元)符合一次函數
,且
時,
;
時,
.
(1)求一次函數的解析式,并指出
的取值范圍;
(2)若該服裝店獲得利潤為元,試寫出利潤
與銷售單價
之間的關系式;銷售單價
定為多少元時,可獲得最大利潤最大利潤是多少元?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某城市的公交公司為了方便市民出行,科學規劃車輛投放,在一個人員密集流動地段增設一個起點站,為了研究車輛發車間隔時間與乘客等候人數
之間的關系,經過調查得到如下數據:
間隔時間/分 | 10 | 11 | 12 | 13 | 14 | 15 |
等候人數y/人 | 23 | 25 | 26 | 29 | 28 | 31 |
調查小組先從這組數據中選取
組數據求線性回歸方程,再用剩下的
組數據進行檢驗.檢驗方法如下:先用求得的線性回歸方程計算間隔時間對應的等候人數
,再求
與實際等候人數
的差,若差值的絕對值都不超過
,則稱所求方程是“恰當回歸方程”.
(1)從這組數據中隨機選取2組數據,求選取的這
組數據的間隔時間不相鄰的概率;
(2)若選取的是后面組數據,求
關于
的線性回歸方程
,并判斷此方程是否是“恰當回歸方程”;
附:對于一組數據,
,……,
,其回歸直線
的斜率和截距的最小二乘估計分別為:
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,已知橢圓 過點
,離心率為
,左、右焦點分別為
、
,點
為直線
上且不在
軸上的任意一點,直線
和
與橢圓的交點分別為
、
和
、
,
為坐標原點.
(1)求橢圓的標準方程;
(2)設直線、
的斜線分別為
、
.
(i)證明:;
(ii)問直線上是否存在點
,使得直線
、
、
、
的斜率
、
、
、
滿足
?若存在,求出所有滿足條件的點
的坐標;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知二次函數y=f1(x)的圖象以原點為頂點且過點(1,1),反比例函數y=f2(x)的圖象與直線y=x的兩個交點間距離為8,f(x)= f1(x)+ f2(x).
(Ⅰ) 求函數f(x)的表達式;
(Ⅱ) 證明:當a>3時,關于x的方程f(x)= f(a)有三個實數解.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某工藝公司要對某種工藝品深加工,已知每個工藝品進價為20元,每個的加工費為n元,銷售單價為x元.根據市場調查,須有,
,
,同時日銷售量m(單位:個)與
成正比.當每個工藝品的銷售單價為29元時,日銷售量為1000個.
(1)寫出日銷售利潤y(單位:元)與x的函數關系式;
(2)當每個工藝品的加工費用為5元時,要使該公司的日銷售利潤為100萬元,試確定銷售單價x的值.(提示:函數與
的圖象在
上有且只有一個公共點)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com