日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
已知函數f(x)=
1
3
x3-ax+1

(Ⅰ)若x=1時,f(x)取得極值,求a的值;
(Ⅱ)求f(x)在[0,1]上的最小值;
(Ⅲ)若對任意m∈R,直線y=-x+m都不是曲線y=f(x)的切線,求a的取值范圍.
(I)∵f'(x)=x2-a,
當x=1時,f(x)取得極值,∴f'(1)=1-a=0,a=1.
又當x∈(-1,1)時,f'(x)<0,x∈(1,+∞)時,f'(x)>0,
∴f(x)在x=1處取得極小值,即a=1符合題意            
(II) 當a≤0時,f'(x)>0對x∈(0,1]成立,
∴f(x)在(0,1]上單調遞增,f(x)在x=0處取最小值f(0)=1.
當a>0時,令f'(x)=x2-a=0,x1=-
a
x2=
a

當0<a<1時,
a
<1
,當x∈(0,
a
)
時,f'(x)<0,f(x)單調遞減,x∈(
a
,1)
時,f'(x)>0,f(x)單調遞增.
所以f(x)在x=
a
處取得最小值f(
a
)=1-
2a
a
3

當a≥1時,
a
≥1
,x∈(0,1)時,f'(x)<0,f(x)單調遞減
所以f(x)在x=1處取得最小值f(1)=
4
3
-a

綜上所述:
當a≤0時,f(x)在x=0處取最小值f(0)=1.
當0<a<1時,f(x)在x=
a
處取得最小值f(
a
)=1-
2a
a
3

當a≥1時,f(x)在x=1處取得最小值f(1)=
4
3
-a

(III)因為?m∈R,直線y=-x+m都不是曲線y=f(x)的切線,
所以f'(x)=x2-a≠-1對x∈R成立,
只要f'(x)=x2-a的最小值大于-1即可,
而f'(x)=x2-a的最小值為f(0)=-a
所以-a>-1,即a<1.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(1)、已知函數f(x)=
1+
2
cos(2x-
π
4
)
sin(x+
π
2
)
.若角α在第一象限且cosα=
3
5
,求f(α)

(2)函數f(x)=2cos2x-2
3
sinxcosx
的圖象按向量
m
=(
π
6
,-1)
平移后,得到一個函數g(x)的圖象,求g(x)的解析式.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=(1-
a
x
)ex
,若同時滿足條件:
①?x0∈(0,+∞),x0為f(x)的一個極大值點;
②?x∈(8,+∞),f(x)>0.
則實數a的取值范圍是(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=
1+lnx
x

(1)如果a>0,函數在區間(a,a+
1
2
)
上存在極值,求實數a的取值范圍;
(2)當x≥1時,不等式f(x)≥
k
x+1
恒成立,求實數k的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=
1+
1
x
,(x>1)
x2+1,(-1≤x≤1)
2x+3,(x<-1)

(1)求f(
1
2
-1
)
與f(f(1))的值;
(2)若f(a)=
3
2
,求a的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

定義在D上的函數f(x)如果滿足:對任意x∈D,存在常數M>0,都有|f(x)|≤M成立,則稱f(x)是D上的有界函數,其中M稱為函數f(x)的上界.已知函數f(x)=
1-m•2x1+m•2x

(1)m=1時,求函數f(x)在(-∞,0)上的值域,并判斷f(x)在(-∞,0)上是否為有界函數,請說明理由;
(2)若函數f(x)在[0,1]上是以3為上界的有界函數,求m的取值范圍.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 日本高清视频网站 | 国产精品免费一区二区三区四区 | 亚洲三级视频 | 国产日韩一区二区 | 久久四色 | 九九热免费精品视频 | 国产在线精品成人免费怡红院 | 美女国产精品 | 中文字幕在线视频免费播放 | 人人av在线 | 欧美国产激情 | 日韩中文字幕在线播放 | 男人的天堂免费 | 亚洲欧美在线视频 | 高清久久 | 久久精品一区二区三区四区 | 综合91| 在线视频这里只有精品 | 小罗莉极品一线天在线 | 久久国产一区 | 日韩中文视频 | 婷婷色综合 | 操操网| 欧美级毛片 | 日韩成人免费在线 | 色网站免费看 | 成人综合在线观看 | 成人在线片 | 在线观看日韩av | 91精品国产乱码久久久久久 | 成人在线小视频 | 天堂在线精品视频 | 欧洲一级免费 | 欧美日韩一级二级三级 | 欧美日韩在线看 | 91麻豆精品国产91久久久久久久久 | 免费日本黄色 | 国产成人看片 | 噜噜噜天天躁狠狠躁夜夜精品 | 日韩一区二区精品视频 | 日本福利视频 |