已知函數(shù),
。
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若與
的圖象恰有兩個交點,求實數(shù)
的取值范圍。
科目:高中數(shù)學 來源: 題型:解答題
已知定義域為的函數(shù)
是奇函數(shù).
(1)求的值;
(2)利用定義判斷函數(shù)的單調(diào)性;
(3)若對任意,不等式
恒成立,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)。
(1)若在
處取得極值,求
的值;
(2)求的單調(diào)區(qū)間;
(3)若且
,函數(shù)
,若對于
,總存在
使得
,求實數(shù)
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
若存在實常數(shù)和
,使得函數(shù)
和
對其定義域上的任意實數(shù)
分別滿足:
和
,則稱直線
為
和
的“隔離直線”.已知
,
為自然對數(shù)的底數(shù)).
(1)求的極值;
(2)函數(shù)和
是否存在隔離直線?若存在,求出此隔離直線方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù).
(1)若,函數(shù)
是R上的奇函數(shù),當
時
,(i)求實數(shù)
與
的值;(ii)當時,求
的解析式;
(2)若方程的兩根中,一根屬于區(qū)間
,另一根屬于區(qū)間
,求實數(shù)
的取 值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)的圖象過點P(0,2),且在點M(-1,f(-1))處的切線方程為
.
(Ⅰ)求函數(shù)的解析式;
(Ⅱ)求函數(shù)的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù),在
時取得極值.
(Ⅰ)求函數(shù)的解析式;
(Ⅱ)若時,
恒成立,求實數(shù)m的取值范圍;
(Ⅲ)若,是否存在實數(shù)b,使得方程
在區(qū)間
上恰有兩個相異實數(shù)根,若存在,求出b的范圍,若不存在說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com