設(shè)函數(shù),
.
(1)記為
的導(dǎo)函數(shù),若不等式
在
上有解,求實數(shù)
的取值范圍;
(2)若,對任意的
,不等式
恒成立.求
(
,
)的值.
(1);(2)
.
解析試題分析:(1)先利用不等式整理得,所以
,設(shè)
,用求導(dǎo)的方法求出
;(2)設(shè)出函數(shù)
,由題意可判斷
在
遞增,所以
恒成立,轉(zhuǎn)化為
恒成立,下面只需求
.
試題解析:(1)不等式,即為
,
化簡得:,
由知
,因而
,設(shè)
,
由
∵當(dāng)時
,
,∴
在
時成立.
由不等式有解,可得知,即實數(shù)
的取值范圍是
6分
(2)當(dāng),
.
由恒成立,得
恒成立,
設(shè).
由題意知,故當(dāng)
時函數(shù)
單調(diào)遞增,
∴恒成立,即
恒成立,
因此,記,得
,
∵函數(shù)在上單調(diào)遞增,在
上單調(diào)遞減,
∴函數(shù)在
時取得極大值,并且這個極大值就是函數(shù)
的最大值.由此可得
,故
,結(jié)合已知條件
,
,可得
. 12分
考點:1.恒成立問題;2.用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性;3.用導(dǎo)數(shù)求函數(shù)的最值.
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分13分)已知函數(shù).
(1)若函數(shù)在
上單調(diào)遞增,求實數(shù)
的取值范圍.
(2)記函數(shù),若
的最小值是
,求函數(shù)
的解析式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)
(1) 當(dāng)時,求
的單調(diào)區(qū)間;
(2) 若當(dāng)時,
恒成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若在區(qū)間[0,2]上恒有,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)(
為常數(shù)).
(1)當(dāng)時,求
的單調(diào)遞減區(qū)間;
(2)若,且對任意的
,
恒成立,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分15分)已知函數(shù).
(1)當(dāng)時,求
在
最小值;
(2)若存在單調(diào)遞減區(qū)間,求
的取值范圍;
(3)求證:(
).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知是實數(shù),函數(shù)
,
和
,分別是
的導(dǎo)函數(shù),若
在區(qū)間
上恒成立,則稱
和
在區(qū)間
上單調(diào)性一致.
(Ⅰ)設(shè),若函數(shù)
和
在區(qū)間
上單調(diào)性一致,求實數(shù)
的取值范圍;
(Ⅱ)設(shè)且
,若函數(shù)
和
在以
為端點的開區(qū)間上單調(diào)性一致,求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),
(1)若x=1時取得極值,求實數(shù)
的值;
(2)當(dāng)時,求
在
上的最小值;
(3)若對任意,直線
都不是曲線
的切線,求實數(shù)
的取值范圍。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com