【題目】某地隨著經濟的發展,居民收入逐年增長,如表是該地一建設銀行連續五年的儲蓄存款(年底余額),如表1
為了研究計算方便,工作人員將上表的數據進行了處理,令,
得到表2:
(1)求:關于t的線性回歸方程;
(2)通過(1)中的方程,求出y關于的回歸方程;
(3)用所求回歸方程預測到2019年年底,該地儲蓄存款額可達多少?
附:對于線性回歸方程,其中
,
.
科目:高中數學 來源: 題型:
【題目】某溫室大棚規定,一天中,從中午12點到第二天上午8點為保溫時段,其余4小時為工作作業時段,從中午12點連續測量20小時,得出此溫室大棚的溫度y(單位:度)與時間t(單位:小時,)近似地滿足函數
關系,其中,b為大棚內一天中保溫時段的通風量。
(1)若一天中保溫時段的通風量保持100個單位不變,求大棚一天中保溫時段的最低溫度(精確到0.1℃);
(2)若要保持一天中保溫時段的最低溫度不小于17℃,求大棚一天中保溫時段通風量的最小值。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列1,1,1,2,2,1,2,4,3,1,2,4,8,4,1,2,4,8,16,5,…,其中第一項是,第二項是1,接著兩項為
,
,接著下一項是2,接著三項是
,
,
,接著下一項是3,依此類推.記該數列的前
項和為
,則滿足
的最小的正整數
的值為( )
A.65B.67C.75D.77
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某服裝廠生產一種服裝,每件服裝成本為40元,出廠單價定為60元,該廠為鼓勵銷售商訂購,規定當一次訂購量超過100件時,每多訂購一件,訂購的全部服裝的出廠單價就降低元,根據市場調查,銷售商一次訂購不會超過600件.
(1)設一次訂購件,服裝的實際出廠單價為
元,寫出函數
的表達式;
(2)當銷售商一次訂購多少件服裝時,該廠獲得的利潤最大?其最大利潤是多少?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,直線
的參數方程為
(
為參數),曲線
的參數方程為
(
為參數),以該直角坐標系的原點
為極點,
軸的非負半軸為極軸建立極坐標系,曲線
的極坐標方程為
.
(Ⅰ)分別求曲線的極坐標方程和曲線
的直角坐標方程;
(Ⅱ)設直線交曲線
于
,
兩點,交曲線
于
,
兩點,求
的長.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】隨著創新驅動發展戰略的不斷深入實施,高新技術企業在科技創新和經濟發展中的帶動作用日益凸顯,某能源科學技術開發中心擬投資開發某新型能源產品,估計能獲得萬元的投資收益,現準備制定一個對科研課題組的獎勵議案:獎金
(單位:萬元)隨投資收益
(單位:萬元)的增加而增加,獎金不超過
萬元,同時獎金不超過投資收益的
.(即:設獎勵方案函數模擬為
時,則公司對函數模型的基本要求是:當
時,①
是增函數;②
恒成立;③
恒成立.)
(1)現有兩個獎勵函數模型:(I);(II)
.試分析這兩個函數模型是否符合公司要求?
(2)已知函數符合公司獎勵方案函數模型要求,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校舉行運動會,其中三級跳遠的成績在8.0米 (四舍五入,精確到0.1米) 以上的進入決賽,把所得數據進行整理后,分成6組畫出頻率分布直方圖的一部分(如圖),已知從左到右前5個小組的頻率分別為0.04,0.10,0.14,0.28,0.30 ,第6小組的頻數是7 .
(Ⅰ)求進入決賽的人數;
(Ⅱ)若從該校學生(人數很多)中隨機抽取兩名,記表示兩人中進入決賽的人數,求
的分布列及數學期望;
(Ⅲ) 經過多次測試后發現,甲成績均勻分布在8~10米之間,乙成績均勻分布在9.5~10.5米之間,現甲,乙各跳一次,求甲比乙遠的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知正項數列的前
項和為
,且
.
(1)求數列的通項公式;
(2)若,數列
的前
項和為
,求
的取值范圍;
(3)若,從數列
中抽出部分項(奇數項與偶數項均不少于兩項),將抽出的項按照某一順序排列后構成等差數列.當等差數列的項數最大時,求所有滿足條件的等差數列.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com