已函數是定義在
上的奇函數,在
上
.
(1)求函數的解析式;并判斷
在
上的單調性(不要求證明);
(2)解不等式.
科目:高中數學 來源: 題型:解答題
已知函數 (
為實常數)
(1)當時,求函數
在
上的最大值及相應的
值;
(2)當時,討論方程
根的個數
(3)若,且對任意的
,都有
,求實數a的取值范圍
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知,
(Ⅰ)當時,求曲線
在點
處的切線方程;
(Ⅱ)若在
處有極值,求
的單調遞增區間;
(Ⅲ)是否存在實數,使
在區間
的最小值是3,若存在,求出
的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分16分)如圖,某自來水公司要在公路兩側排水管,公路為東西方向,在路北側沿直線排,在路南側沿直線
排,現要在矩形區域
內沿直線將
與
接通.已知
,
,公路兩側排管費用為每米1萬元,穿過公路的
部分的排管費用為每米2萬元,設
與
所成的小于
的角為
.
(Ⅰ)求矩形區域內的排管費用
關于
的函數關系式;
(Ⅱ)求排管的最小費用及相應的角.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知函數,
為自然對數的底數).
(Ⅰ)當時,求
的單調區間;
(Ⅱ)若函數在
上無零點,求
最小值;
(Ⅲ)若對任意給定的,在
上總存在兩個不同的
),使
成立,求
的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com