日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
已知-
π
2
≤α≤
π
2
,0≤β≤π,則2α-
β
2
的范圍是
[-
2
,π]
[-
2
,π]
分析:由已知,分別求出2α,-
β
,2
 的取值范圍,再利用不等式的可加性求解.
解答:解:∵-
π
2
≤α≤
π
2
,∴-π≤2α≤π,①
∵0≤β≤π,∴-π≤-β≤0,-
π
2
≤-
β
2
≤0②
①②兩式左右兩邊分別相加得,2α-
β
2
[-
2
,π]

故答案為:[-
2
,π]
點評:本題考查了不等式的基本性質.注意多個同向不等式兩邊不能相減,如本題應將2α-
β
2
看作2α+(-
β
2
)來求解.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知α+2β=
3
,α和β為銳角;
(1)若tan(α+β)=2+
3
;求β;
(2)若tanβ=(2-
3
)cot
α
2
,滿足條件的α和β是否存在?若存在,請求出α和β的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=alnx-ax-3(a∈R).
(1)當a=1時,求函數f(x)的單調區間;
(2)若函數y=f(x)的圖象在點(2,f(2))處的切線的傾斜角為45°,問:m在什么范圍取值時,函數g(x)=x3+x2[
m
2
+f′(x)]
在區間(2,3)上總存在極值?
(3)當a=2時,設函數g(x)=(ρ-2)x+
ρ+2
x
-3
,若對任意地x∈[1,2],f(x)≥g(x)恒成立,求實數p的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知定義在R上的函數f(x)滿足f(2)=1,f′(x)為f(x)的導函數.已知y=f′(x)的圖象如圖所示,若兩個正數a,b滿足f(2a+b)>1,則
b-1
a-2
的取值范圍是(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

在直角坐標系x0y中,已知曲線C的參數方程是
x=
2
cosθ+1
y=
2
sinθ+1
(θ是參數),則曲線C的普通方程是
(x-1)2+(y-1)2=2
(x-1)2+(y-1)2=2
,若以o為極點,x軸的正半軸為極軸,則曲線C的極坐標方程為
ρ=2
2
cos(θ-
π
4
)
ρ=2
2
cos(θ-
π
4
)

查看答案和解析>>

科目:高中數學 來源: 題型:

已知(1-ax)n展開式的第r,r+1,r+2三項的二次式系數構成等差數列,第n+1-r與第n+2-r項的系數之和為0,而(1-ax)n+1展開式的第r+1與r+2項的二項式系數之比為1:2.
(1)求(1-ax)n+1展開式的中間項;
(2)求(1-ax)n的展開式中系數最大的項.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 亚洲视频区 | 中文字幕日韩一区二区不卡 | 成人av在线播放 | 亚洲久久在线 | 在线看黄色av | 久久精品国产99 | 一二三区精品 | 欧美日韩国产在线观看 | 精品国产一区二区三区久久久蜜月 | 婷婷伊人 | www.精品 | 91精品国产欧美一区二区成人 | 污网址在线免费观看 | 欧美日韩视频一区二区 | 国产不卡一区在线观看 | 武道仙尊动漫在线观看 | 久久韩剧网 | 日韩毛片 | 亚洲伊人久久综合 | 日韩特黄一级欧美毛片特黄 | 久久成人在线视频 | 禁片天堂 | 一区二区三区精品视频 | 福利亚洲 | 欧美日韩中文字幕 | 国产乱码精品一区二区三区五月婷 | 国产成人 综合 亚洲 | 亚洲人人舔人人 | 三级精品 | 91精品久久久久久久久久入口 | 欧美色视频在线观看 | 精品国产一区二区三区电影小说 | 奇米色777欧美一区二区 | 日本福利一区二区 | 亚洲欧洲一区二区三区 | 可以看黄的视频 | 午夜不卡视频 | 欧美一级全黄 | 久久人久久 | 国产精品免费观看 | 亚洲国产一二区 |