【題目】(本小題滿分12分)
某工廠生產甲、乙兩種產品,已知生產每噸甲、乙兩種產品所需煤、電力、勞動力、獲得利潤及每天資源限額(最大供應量)如表所示:
| 甲產品 | 乙產品 | 資源限額 |
煤(t) | 9 | 4 | 360 |
電力(kw·h) | 4 | 5 | 200 |
勞力(個) | 3 | 10 | 300 |
利潤(萬元) | 7 | 12 |
問:每天生產甲、乙兩種產品各多少噸,獲得利潤總額最大?
科目:高中數學 來源: 題型:
【題目】已知函數f(x)= (x≠0).
(1)證明函數f(x)為奇函數;
(2)判斷函數f(x)在[1,+∞)上的單調性,并說明理由;
(3)若x∈[﹣2,﹣3],求函數的最大值和最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若關于x的不等式(a2﹣a)4x﹣2x﹣1<0在區間(﹣∞,1]上恒成立,則實數a的取值范圍為( )
A.(﹣2, )
B.(﹣∞, )
C.(﹣ ,
)
D.(﹣∞,6]
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下表提供了某廠節能降耗技術改造后生產甲產品過程中記錄的產量(噸)與相應的生產能耗
(噸)標準煤的幾組對照數據:
1 | 2 | 3 | 4 | 5 | |
2 | 3 | 6 | 9 | 10 |
(1)請畫出上表數據的散點圖;
(2)請根據上表提供的數據,用最小二乘法求出關于
的線性回歸方程
;
(3)已知該廠技術改造前100噸甲產品能耗為200噸標準煤,試根據(2)求出的線性回歸方程,預測生產100噸甲產品的生產能耗比技術改造前降低多少噸標準煤?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】給出下列四個命題:
①三點確定一個平面;
②三條兩兩相交的直線確定一個平面;
③在空間上,與不共面四點A,B,C,D距離相等的平面恰有7個;
④兩個相交平面把空間分成四個區域.
其中真命題的序號是 (寫出所有真命題的序號).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,A,B是海面上位于東西方向相距5(3+)海里的兩個觀測點,現位于A點北偏東45°,B點北偏西60°的D點有一艘輪船發出求救信號,位于B點南偏西60°且與B點相距20
海里的C點的救援船立即即前往營救,其航行速度為30海里/小時,該救援船到達D點需要多長時間?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com