已知
(1)設(shè),求
的最大值與最小值;
(2)求的最大值與最小值;
(1)最大值9,最小值;(2)最大值67,最小值3
解析試題分析:(1)根據(jù)指數(shù)函數(shù)單調(diào)性求其最值。(2)由已知可轉(zhuǎn)化為,圖像是開口向上以
為對稱軸的拋物線。
時,
,所以
時
取得最小值即
取得最小值,
時
取得最大值即
取得最大值。
試題解析:解:(1)在
是單調(diào)增函數(shù)
,
(2)令,
,
原式變?yōu)椋?img src="http://thumb.zyjl.cn/pic5/tikupic/f4/2/rwek5.png" style="vertical-align:middle;" />,,
,
當(dāng)
時,此時
,
,
當(dāng)時,此時
,
考點:1指數(shù)函數(shù)的單調(diào)性;2二次函數(shù)的單調(diào)性;3利用單調(diào)性求最值。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知的圖象關(guān)于坐標(biāo)原點對稱。
(1)求的值,并求出函數(shù)
的零點;
(2)若函數(shù)在[0,1]內(nèi)存在零點,求實數(shù)b的取值范圍;
(3)設(shè),已知
的反函數(shù)
=
,若不等式
在
上恒成立,求滿足條件的最小整數(shù)k的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=x2-4,設(shè)曲線y=f(x)在點(xn,f(xn))
處的切線與x軸的交點為(xn+1,0)(n∈N+),其中x1為正實數(shù).
(1)用xn表示xn+1;
(2)求證:對一切正整數(shù)n,xn+1≤xn的充要條件是x1≥2;
(3)若x1=4,記an=lg ,證明數(shù)列{an}成等比數(shù)列,并求數(shù)列{xn}的通項公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)當(dāng)時,判斷
在
的單調(diào)性,并用定義證明.
(2)若對任意,不等式
恒成立,求
的取值范圍;
(3)討論零點的個數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某投資公司投資甲、乙兩個項目所獲得的利潤分別是P(億元)和Q(億元),它們與投資額t(億元)的關(guān)系有經(jīng)驗公式P=,Q=
t,今該公司將5億元投資于這兩個項目,其中對甲項目投資x(億元),投資這兩個項目所獲得的總利潤為y(億元).求:
(1)y關(guān)于x的函數(shù)表達(dá)式.
(2)總利潤的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(13分)某工廠某種產(chǎn)品的年固定成本為250萬元,每生產(chǎn)x千件,需另投入成本C(x),當(dāng)年產(chǎn)量不足80千件時,C(x)=x2+10x(萬元);當(dāng)年產(chǎn)量不小于80千件時,C(x)=51x+
-1 450(萬元).每件商品售價為0.05萬元.通過市場分析,該廠生產(chǎn)的商品能全部售完.
(1)寫出年利潤L(x)(萬元)關(guān)于年產(chǎn)量x(千件)的函數(shù)解析式;
(2)年產(chǎn)量為多少千件時,該廠在這一商品的生產(chǎn)中所獲利潤最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某單位擬建一個扇環(huán)面形狀的花壇(如圖所示),該扇環(huán)面是由以點為圓心的兩個同心圓弧和延長后通過點
的兩條直線段圍成.按設(shè)計要求扇環(huán)面的周長為30米,其中大圓弧所在圓的半徑為10米.設(shè)小圓弧所在圓的半徑為
米,圓心角為
(弧度).
(1)求關(guān)于
的函數(shù)關(guān)系式;
(2)已知在花壇的邊緣(實線部分)進(jìn)行裝飾時,直線部分的裝飾費(fèi)用為4元/米,弧線部分的裝飾費(fèi)用為9元/米.設(shè)花壇的面積與裝飾總費(fèi)用的比為,求
關(guān)于
的函數(shù)關(guān)系式,并求出
為何值時,
取得最大值?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知m、n為正整數(shù),a>0且a≠1,且logam+loga+loga
+…+loga
=logam+logan,求m、n的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com