【題目】在直角坐標(biāo)系中,曲線
的參數(shù)方程為
(
為參數(shù)),以坐標(biāo)原點為極點,以
軸的正半軸為極軸,建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
.
(1)求曲線的普通方程和直線
的直角坐標(biāo)方程;
(2)設(shè)點在
上,點
在
上,求
的最小值及對應(yīng)的點
的直角坐標(biāo).
【答案】(1):
,
;(2)當(dāng)
的坐標(biāo)為
時,
取最小值
.
【解析】試題分析:
(1)由題意可得曲線的普通方程和直線
的直角坐標(biāo)方程分別為
:
,
;
(2)將距離轉(zhuǎn)化為三角函數(shù)的問題,據(jù)此可得當(dāng)的坐標(biāo)為
時,
取最小值
.
試題解析:
(1)由消去
得曲線
的普通方程為
,
又,所以
.
而,所以直線
的直角坐標(biāo)方程為
.
(2)設(shè)的坐標(biāo)
,點
到直線
的距離為
,
,
的最小值即為
的最小值,
當(dāng)即
時,
,此時
的坐標(biāo)為
.
所以當(dāng)的坐標(biāo)為
時,
取最小值
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《中華人民共和國個人所得稅》規(guī)定,公民月工資、薪金所得不超過3500元的部分不納稅,超過3500元的部分為全月納稅所得額,此項稅款按下表分段累計計算:
已知張先生的月工資、薪金所得為10000元,問他當(dāng)月應(yīng)繳納多少個人所得稅?
設(shè)王先生的月工資、薪金所得為元,當(dāng)月應(yīng)繳納個人所得稅為
元,寫出
與
的函數(shù)關(guān)系式;
(3)已知王先生一月份應(yīng)繳納個人所得稅為303元,那么他當(dāng)月的個工資、薪金所得為多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某農(nóng)科所對冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進(jìn)行分析研究。他們分別記錄了12月1日至12月5日的每天晝夜溫差與實驗室每天每100顆種子的發(fā)芽數(shù),得到如下資料:
日期 | 12月1日 | 12月2日 | 12月3日 | 12月4日 | 12月5日 |
溫差 | 10 | 11 | 13 | 12 | 8 |
發(fā)芽數(shù) | 23 | 25 | 30 | 26 | 16 |
該農(nóng)科所確定的研究方案是:先從這五組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線性回歸方程,再對被選取的2組數(shù)據(jù)進(jìn)行檢驗.
(1)若選取的是12月1日與12月5日的兩組數(shù)據(jù),請根據(jù)12月2日至12月4日的數(shù)據(jù),求出y關(guān)于x的線性回歸方程=bx+a;
(2)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2顆,則認(rèn)為 得到的線性回歸方程是可靠的,試問(1)中所得的線性回歸方程是否可靠?
(附:,
,其中
,
為樣本平均值)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】觀察以下5個等式:
-1=-1
-1+3=2
-1+3-5=-3
-1+3-5+7=4
-1+3-5+7-9=-5
……
根據(jù)以上式子規(guī)律:
(1)寫出第6個等式,并猜想第n個等式;(n∈N*)
(2)用數(shù)學(xué)歸納法證明上述所猜想的第n個等式成立.(n∈N*)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)在點
處的切線與直線
平行,且
,其中
.
(Ⅰ)求的值,并求出函數(shù)
的單調(diào)區(qū)間;
(Ⅱ)設(shè)函數(shù),對于正實數(shù)
,若
,使得
成立,求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=.(a>0)
(1)若a=1,證明:y=f(x)在R上單調(diào)遞減;
(2)當(dāng)a>1時,討論f(x)零點的個數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若,求曲線
在點
處的切線方程;
(2)若函數(shù)在
上是減函數(shù),求實數(shù)
的取值范圍;
(3)令,是否存在實數(shù)
,當(dāng)
(
是自然對數(shù)的底數(shù))時,函數(shù)
的最小值是
?若存在,求出
的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某農(nóng)科所對冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進(jìn)行分析研究,他們分別記錄了12月1日至12月5日的每天晝夜溫差與實驗室每天每100顆種子中的發(fā)芽數(shù),得到如下資料:
日 期 | 12月1日 | 12月2日 | 12月3日 | 12月4日 | 12月5日 |
溫差 | 10 | 11 | 13 | 12 | 8 |
發(fā)芽數(shù) | 23 | 25 | 30 | 26 | 16 |
該農(nóng)科所確定的研究方案是:先從這五組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線性回歸方程,再對被選取的2組數(shù)據(jù)進(jìn)行檢驗.
(1)求選取的2組數(shù)據(jù)恰好是不相鄰2天數(shù)據(jù)的概率;
(2)若選取的是12月1日與12月5日的兩組數(shù)據(jù),請根據(jù)12月2日至12月4日的數(shù)據(jù),求出y關(guān)于x的線性回歸方程;
(3)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(2)中所得的線性回歸方程是否可靠?
(注: )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)高二年級開設(shè)五門大學(xué)先修課程,其中屬于數(shù)學(xué)學(xué)科的有兩門,分別是線性代數(shù)和微積分,其余三門分別為大學(xué)物理,商務(wù)英語以及文學(xué)寫作,年級要求每名學(xué)生只能選修其中一科,該校高二年級600名學(xué)生各科選課人數(shù)統(tǒng)計如下表:
其中選修數(shù)學(xué)學(xué)科的人數(shù)所占頻率為0.6,為了了解學(xué)生成績與選課情況之間的關(guān)系,用分層抽樣的方法從這600名學(xué)生中抽取10人進(jìn)行分析.
(1)求和
的取值以及抽取的10人中選修商務(wù)英語的學(xué)生人數(shù);
(2)選出的10名學(xué)生中恰好包含甲乙兩名同學(xué),其中甲同學(xué)選修的是線性代數(shù),乙同學(xué)選修的是大學(xué)物理,現(xiàn)從線性代數(shù)和大學(xué)物理兩個學(xué)科中隨機抽取3人,求這3人中正好有甲乙兩名同學(xué)的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com