A. | $\sqrt{5}-2$ | B. | $2\sqrt{2}-1$ | C. | $\sqrt{5}-1$ | D. | $\sqrt{6}-1$ |
分析 由設P(2cosα,$\sqrt{3}$sinα),則設$d=\sqrt{{x^2}+{y^2}+4y+4}-\frac{x}{2}$=$\sqrt{4co{s}^{2}α+3si{n}^{2}α+4\sqrt{3}sinα+4}$-cosα=$\sqrt{20-(sinα-2\sqrt{3})^{2}}$-cosα,當sinα=0,cosα=1時,d的最小值.
解答 解:橢圓$\frac{x^2}{4}+\frac{y^2}{3}=1$焦點在x軸上,由點P(x,y)在橢圓上,
設P(2cosα,$\sqrt{3}$sinα),則設$d=\sqrt{{x^2}+{y^2}+4y+4}-\frac{x}{2}$
=$\sqrt{4co{s}^{2}α+3si{n}^{2}α+4\sqrt{3}sinα+4}$-cosα,
=$\sqrt{20-(sinα-2\sqrt{3})^{2}}$-cosα,
當sinα=0,cosα=1時,
d的最小值為$d=\sqrt{{x^2}+{y^2}+4y+4}-\frac{x}{2}$=$\sqrt{20-12}$-1=2$\sqrt{2}$-1,
d的最小值2$\sqrt{2}$-1,
故選B.
點評 本題考查橢圓的參數方程,同角三角形函數的基本關系,考查三角函數的最值,考查計算能力,屬于中檔題.
科目:高中數學 來源: 題型:選擇題
A. | -6 | B. | -4 | C. | -3 | D. | -2 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com