【題目】對于復數(
為虛數單位),定義
,給出下列命題:①對任何復數z,都有
,等號成立的充要條件是
;②
:③若
,則
:④對任何復數
,不等式
恒成立,其中真命題的個數是( )
A.1B.2C.3D.4
【答案】C
【解析】
在①中,當z=0時,‖z‖=0;反之,當‖z‖=0時,z=0;在②中,z=a+bi,a﹣bi,從而‖z‖=‖
‖=|a|+|b|;在③中,當z1=2+3i,z2=3+2i時,不成立;④由絕對值的性質得到‖z1﹣z3‖≤‖z1﹣z2‖+‖z2﹣z3‖恒成立.
由復數z=a+bi(a、b∈R,i為虛數單位),定義‖z‖=|a|+|b|,知:
在①中,對任何復數,都有‖z‖≥0,
當z=0時,‖z‖=0;反之,當‖z‖=0時,z=0,
∴等號成立的充要條件是z=0,故①成立;
在②中,∵z=a+bi,a﹣bi,∴‖z‖=‖
‖=|a|+|b|,故②成立;
在③中,當z1=2+3i,z2=3+2i時,‖z1‖=‖z2‖,但z1≠±z2,故③錯誤;
④對任何復數z1,z2,z3,
設z1=a1+b1i,z2=a2+b2i,z3=a3+b3i,
則‖z1﹣z3‖=|a1﹣a3|+|b1﹣b3|,
‖z1﹣z2‖+‖z2﹣z3‖=|a1﹣a2|+|a2﹣a3|+|b1﹣b2|+|b2﹣b3|,
|a1﹣a3|≤|a1﹣a2|+|a2﹣a3|,
|b1﹣b3|≤|b1﹣b2|+|b2﹣b3|,
∴‖z1﹣z3‖≤‖z1﹣z2‖+‖z2﹣z3‖恒成立.故④成立.
故選:C.
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=x2+2alnx.
(1)若函數f(x)的圖象在(2,f(2))處的切線斜率為1,求實數a的值;
(2)若函數在[1,2]上是減函數,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,直線
的傾斜角為
,且經過點
.以坐標原點O為極點,x軸正半軸為極軸建立極坐標系,直線
,從原點O作射線交
于點M,點N為射線OM上的點,滿足
,記點N的軌跡為曲線C.
(Ⅰ)求出直線的參數方程和曲線C的直角坐標方程;
(Ⅱ)設直線與曲線C交于P,Q兩點,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,已知曲線
的參數方程為
(
為參數).以
為極點,
軸正半軸為極軸建立極坐標系,曲線
的極坐標方程為
.
(1)求曲線的極坐標方程和曲線
的直角坐標方程;
(2)設動直線:
分別與曲線
,
相交于點
,
,求當
為何值時,
取最大值,并求
的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,將橢圓上每一點的橫坐標保持不變,縱坐標變為原來的一半,得曲線C,以坐標原點為極點,x軸正半軸為極軸建立極坐標系,直線l的極坐標方程為
.
寫出曲線C的普通方程和直線l的直角坐標方程;
已知點
且直線l與曲線C交于A、B兩點,求
的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com