日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
設函數f(x)=sinxcosx-
3
cos(x+π)cosx
(x∈R)
(I)求函數f(x)圖象的對稱軸方程和對稱中心坐標;
(II)若函數y=f(x)的圖象按
b
=(
π
4
,
3
2
)
平移后得到函數y=g(x)的圖象,求y=g(x)在(0,
π
2
]
上的取值范圍.
分析:(I)化簡f(x)的解析式為sin(2x+
π
3
)+
3
2
,由2x+
π
3
=kπ+
π
2
,k∈z 求得對稱軸方程;令sin(2x+
π
3
)
=0 可得 2x+
π
3
=kπ,k∈z,解得 x的值,即為對稱中心的橫坐標,再由對稱中心的縱坐標為
3
2
求出對稱中心坐標.
(II)求出g(x)=sin(2x-
π
6
)+
3
.根據0<x≤
π
2
,可得-
π
6
<2x-
π
6
6
,故-
1
2
<sin(2x-
π
6
)≤1,從而求得g(x)的值域.
解答:解:(I)函數f(x)=sinxcosx-
3
cos(x+π)cosx
=
1
2
sin2x+
3
2
cos2x=sin(2x+
π
3
)+
3
2

由2x+
π
3
=kπ+
π
2
,k∈z 求得對稱軸方程為x=
π
12
+
2
,k∈Z

sin(2x+
π
3
)
=0 可得 2x+
π
3
=kπ,k∈z,解得 x=-
π
6
+
2

故對稱中心坐標為(-
π
6
+
2
,
3
2
),k∈Z

(II)函數y=f(x)的圖象按
b
=(
π
4
3
2
)
平移后得到函數y=g(x)=sin[2(x-
π
4
)+
π
3
]+
3
2
+
3
2
 
=sin(2x-
π
6
)+
3

再由 0<x≤
π
2
,可得-
π
6
<2x-
π
6
6
,∴-
1
2
<sin(2x-
π
6
)≤1,
-
1
2
+
3
<sin(2x-
π
6
)+
3
≤1+
3

故y=g(x)在(0,
π
2
]
上的取值范圍是(-
1
2
+
3
,1+
3
]
點評:本題主要考查函數y=Asin(ωx+∅)的圖象變換,三角函數的恒等變換及化簡求值,正弦函數的定義域和值域,三角函數的對稱性,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設函數f(x)=sinx+tanx,x∈(-
π
2
π
2
)
,項數為25的等差數列an且公差d≠0,若f(a1)+f(a2)+f(a3)+…+f(a25)=0,則i=
 
有f(ai)=0.

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)=sinx•cosx+
3
cos2x

(1)求f(x)的最小正周期;
(2)已知f(α)=
1
3
+
3
2
,α∈(
π
12
π
3
)
,求cos2α.

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)=sinx-
3
cosx+x+1

(Ⅰ)求函數f(x)在x=0處的切線方程;
(Ⅱ)記△ABC的內角A、B、C的對邊長分別為a、b、c,f′(B)=3且a+c=2,求邊長b的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)=|sinx+
2
3+sinx
+m|(x∈R,m∈R)
最大值為g(m),則g(m)的最小值為
3
4
3
4

查看答案和解析>>

科目:高中數學 來源: 題型:

已知設函數
f(x)=
sinx,(0≤x≤
π
2
)
-
π
2
x+2,(
π
2
<x≤π)
π
0
f(x)dx
=
-
π3
4
+π+1
-
π3
4
+π+1

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 国产精品成人免费视频 | 欧美日韩亚洲在线 | 久久免费看| 色九九| 国产一区二区免费 | 草草影院在线观看 | 久热在线视频 | 国产九九九精品视频 | 欧美日韩精品一区二区 | 在线99视频 | 国产91九色一区二区三区 | 欧美激情一区二区三区蜜桃视频 | 日韩二区三区 | 91精品国产综合久久精品 | 三级性视频 | 日韩精品人成在线播放 | 一区二区精品在线 | 国产主播久久 | 国产精品久久久久久久久久久久久久久久久 | 午夜视频在线免费观看 | 久久精品一 | 亚洲婷婷网 | 91亚洲精品视频 | 中文字幕在线欧美 | 国产在线一区二区三区四区 | 亚洲成人一区二区 | 久久小视频| 亚洲一区二区日韩 | 免费观看亚洲 | 色婷婷综合久久久久中文一区二 | 欧美久久一级特黄毛片 | 国产二区在线播放 | 黄av免费| 精品久久久久久亚洲综合网站 | 国产精品久久精品 | 五月天色视频 | 国产精品99久久久久久宅男 | 性处破╳╳╳高清欧美 | 日韩一区在线观看视频 | 国产欧美一区二区精品婷婷 | 久久99国产伦子精品免费 |