【題目】某家電公司銷售部門共有200位銷售員,每位部門對每位銷售員都有1400萬元的年度銷售任務,已知這200位銷售員去年完成銷售額都在區間(單位:百萬元)內,現將其分成5組,第1組,第2組,第3組,第4組,第5組對應的區間分別為
,
,
,
,
,繪制出頻率分布直方圖.
(1)求的值,并計算完成年度任務的人數;
(2)用分層抽樣從這200位銷售員中抽取容量為25的樣本,求這5組分別應抽取的人數;
(3)現從(2)中完成年度任務的銷售員中隨機選取2位,獎勵海南三亞三日游,求獲得此獎勵的2位銷售員在同一組的概率.
【答案】(Ⅰ),
;(Ⅱ)見解析; (Ⅲ)
.
【解析】試題分析:(1)頻率分布直方圖中所有小長方形面積之和為1,所以有,解得
的值,根據小長方形面積對應區間概率,以及頻數等于總數與頻率乘積得完成年度任務的人數為
.(2)分成抽樣就是按比例,可按小長方形縱坐標之比進行分人數,(3)完成年度任務的銷售員中共有6人,利用枚舉法得6人中隨機選取2位,所有的基本事件數為15,其中在同一組基本事件數有6個,最后根據古典概型概率公式計算概率.
試題解析:(Ⅰ)∵,∴
.
完成年度任務的人數為.
(Ⅱ)第1組應抽取的人數為,
第2組應抽取的人數為,
第3組應抽取的人數為,
第4組應抽取的人數為,
第5組應抽取的人數為.
(Ⅲ)在(Ⅱ)中完成年度任務的銷售員中,第4組有3人,記這3人分別為,
,
,第5組有3人,記這3人分別為
,
,
.
從這6人中隨機選取2位,所有的基本事件為: ,
,
,
,
,
,
,
,
,
,
,
,
,
,
,共有15個基本事件.
獲得此獎勵的2位銷售員在同一組的基本事件有6個,
故所求概率為.
科目:高中數學 來源: 題型:
【題目】已知函數.
(1)解不等式;
(2)若函數在區間
上存在零點,求實數
的取值范圍;
(3)若函數,其中
為奇函數,
為偶函數,若不等式
對任意
恒成立,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,橢圓:
的離心率為
,點
在橢圓
上.
(1)求橢圓的方程;
(2)已知與
為平面內的兩個定點,過
點的直線
與橢圓
交于
,
兩點,求四邊形
面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在三棱柱中,
,
,點
在平而
內的射影為
(1)證明:四邊形為矩形;
(2)分別為
與
的中點,點
在線段
上,已知
平面
,求
的值.
(3)求平面與平面
所成銳二面角的余弦值
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:
的左,右焦點分別為
,
,離心率為
,直線
與橢圓
的兩個交點間的距離為
.
(1)求橢圓的標準方程;
(2)如圖,過,
作兩條平行線
,
與橢圓
的上半部分分別交于
,
兩點,求四邊形
面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐中,底面
為菱形,
平面
,
,
,
,
分別是
,
的中點.
(1)證明: ;
(2)設為線段
上的動點,若線段
長的最小值為
,求二面角
的余弦值.
【答案】(1)見解析;(2)
【解析】試題分析:(1)證明線線垂直則需證明線面垂直,根據題意易得,然后根據等邊三角形的性質可得
,又
,因此
得
平面
,從而得證(2)先找到EH什么時候最短,顯然當線段
長的最小時,
,在
中,
,
,
,∴
,由
中,
,
,∴
.然后建立空間直角坐標系,寫出兩個面法向量再根據向量的夾角公式即可得余弦值
解析:(1)證明:∵四邊形為菱形,
,
∴為正三角形.又
為
的中點,∴
.
又,因此
.
∵平面
,
平面
,∴
.
而平面
,
平面
且
,
∴平面
.又
平面
,∴
.
(2)如圖, 為
上任意一點,連接
,
.
當線段長的最小時,
,由(1)知
,
∴平面
,
平面
,故
.
在中,
,
,
,
∴,
由中,
,
,∴
.
由(1)知,
,
兩兩垂直,以
為坐標原點,建立如圖所示的空間直角坐標系,又
,
分別是
,
的中點,
可得,
,
,
,
,
,
,
所以,
.
設平面的一法向量為
,
則因此
,
取,則
,
因為,
,
,所以
平面
,
故為平面
的一法向量.又
,
所以
.
易得二面角為銳角,故所求二面角的余弦值為
.
【題型】解答題
【結束】
20
【題目】【2018湖北七市(州)教研協作體3月高三聯考】已知橢圓:
的左頂點為
,上頂點為
,直線
與直線
垂直,垂足為
點,且點
是線段
的中點.
(I)求橢圓的方程;
(II)如圖,若直線:
與橢圓
交于
,
兩點,點
在橢圓
上,且四邊形
為平行四邊形,求證:四邊形
的面積
為定值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com