已知橢圓C的兩個焦點是(0,-)和(0,
),并且經過點
,拋物線E的頂點在坐標原點,焦點F恰好是橢圓C的右頂點.
(Ⅰ)求橢圓C和拋物線E的標準方程;
(Ⅱ)過點F作兩條斜率都存在且互相垂直的直線l1、l2,l1交拋物線E于點A、B,l2交拋物線E于點G、H,求的最小值.
(I)橢圓C的標準方程為;拋物線E的標準方程為
;(Ⅱ)最小值為16.
解析試題分析:(I)由題意得c=,
,從而
=1,橢圓C的標準方程為
.該橢圓右頂點的坐標為(1,0),即拋物線的焦點為(1,0),所以
,拋物線E的標準方程為
.(Ⅱ)設l1的方程:
,l2的方程
,
,
,
,
.注意
,且它們交于點
,所以可將
作如下變形:
=
=|
|·|
|+|
|·|
|,這樣先將|
|·|
|+|
|·|
|用
表示出來,再利用韋達定理用
表示,從而求得其最小值.
試題解析:(I)設橢圓的標準方程為(a>b>0),焦距為2c,
則由題意得c=,
,
∴a=2,=1,
∴橢圓C的標準方程為. 4分
∴右頂點F的坐標為(1,0).
設拋物線E的標準方程為,
∴,
∴拋物線E的標準方程為. 6分
(Ⅱ)設l1的方程:,l2的方程
,
,
,
,
,
由 消去y得:
,
∴ x1+x2=2+,x1x2=1.
由消去y得:x2-(4k2+2)x+1=0,
∴x3+x4=4k2+2,x3x4=1, 9分
∴
=
=||·|
|+|
|·|
|
=|x1+1|·|x2+1|+|x3+1|·|x4+1|
=(x1x2+x1+x2+1)+(x3x4+x3+x4+1)
=8+
≥8+
=16.
當且僅當即k=±1時,
有最小值16. 13分
考點:1、橢圓與拋物線;2、直線與圓錐曲線.
科目:高中數學 來源: 題型:解答題
已知定點,曲線C是使
為定值的點
的軌跡,曲線
過點
.
(1)求曲線的方程;
(2)直線過點
,且與曲線
交于
,當
的面積取得最大值時,求直線
的方程;
(3)設點是曲線
上除長軸端點外的任一點,連接
、
,設
的角平分線
交曲線
的長軸于點
,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(1)已知點和
,過點
的直線
與過點
的直線
相交于點
,設直線
的斜率為
,直線
的斜率為
,如果
,求點
的軌跡;
(2)用正弦定理證明三角形外角平分線定理:如果在中,
的外角平分線
與邊
的延長線相交于點
,則
.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,橢圓經過點
,其左、右頂點分別是
、
,左、右焦點分別是
、
,
(異于
、
)是橢圓上的動點,連接
交直線
于
、
兩點,若
成等比數列.
(Ⅰ)求此橢圓的離心率;
(Ⅱ)求證:以線段為直徑的圓過點
.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,已知橢圓的右頂點為A(2,0),點P(2e,
)在橢圓上(e為橢圓的離心率).
(1)求橢圓的方程;
(2)若點B,C(C在第一象限)都在橢圓上,滿足,且
,求實數λ的值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓兩焦點坐標分別為
,
,一個頂點為
.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)是否存在斜率為的直線
,使直線
與橢圓
交于不同的兩點
,滿足
. 若存在,求出
的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
在平面直角坐標系中,已知過點
的橢圓
:
的右焦點為
,過焦點
且與
軸不重合的直線與橢圓
交于
,
兩點,點
關于坐標原點的對稱點為
,直線
,
分別交橢圓
的右準線
于
,
兩點.
(1)求橢圓的標準方程;
(2)若點的坐標為
,試求直線
的方程;
(3)記,
兩點的縱坐標分別為
,
,試問
是否為定值?若是,請求出該定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,已知拋物線:
和⊙
:
,過拋物線
上一點
作兩條直線與⊙
相切于
、
兩點,分別交拋物線為E、F兩點,圓心點
到拋物線準線的距離為
.
(1)求拋物線的方程;
(2)當的角平分線垂直
軸時,求直線
的斜率;
(3)若直線在
軸上的截距為
,求
的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
某校同學設計一個如圖所示的“蝴蝶形圖案(陰影區域)”,其中、
是過拋物線
焦點
的兩條弦,且其焦點
,
,點
為
軸上一點,記
,其中
為銳角.
(1)求拋物線方程;
(2)如果使“蝴蝶形圖案”的面積最小,求的大小?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com