日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
如下圖所示,在矩形ABCD中,AB=1,BC=a,PA⊥平面ABCD,PA=1.

(1)在BC邊上是否存在點Q,使得PQ⊥QD?說明理由.

(2)若BC邊上有且僅有一個點Q,使PQ⊥QD,求AD與平面PDQ所成角的正弦值.

(3)在(2)的條件下,能求出平面PQD與平面PAB所成的角的大小嗎?

解:(1)假設BC邊上存在Q點,使得PQ⊥QD,則連結AQ,必有∠AQD=90°,故問題轉化為:在邊BC上是否存在點Q,使得∠AQD=90°?

    由平面幾何知識,問題又可轉化為:以AD為直徑作圓,是否與BC邊有交點?

易知,當AB≤AD,即a≥2時,BC邊上存在點Q,使得∠AQD=90°,從而由三垂線定理有PQ⊥QD;

    當AB>AD,即a<2時,不存在點Q,使得PQ⊥QD.

(2)當BC邊上有且僅有一個點Q,使得PQ⊥QD,可知BC=2,點Q為BC邊的中點.

∵DQ⊥AQ,DQ⊥PA,

∴DQ⊥平面PAQ.

∴平面PAQ⊥平面PQD.過A點作AE⊥PQ于E點,連結DE,

∴AE⊥平面PDQ.

∴∠ADE為AD與平面PDQ所成的角.

    在Rt△PAQ中,PA·AQ=AE·PQ,

∴AE=.

    在Rt△AED中,sin∠ADE=.

(3)延長DQ、AB交于F點,則二面角D—PF—A即為所求.

∵AD⊥AB,AD⊥PA,

∴AD⊥平面PAB.過A作AH⊥PF于H點,連結DH,則DH⊥PF,

∴∠DHA為二面角D—PF—A的平面角.

    在Rt△PAF中,

∵AH·PF=PA·FA,

∴AH=.

    在Rt△DAH中,tan∠DHA=,

∴∠DHA=arctan.

∴平面PQD與平面PAB所成角為arctan.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

有一批材料可以建成長為200米的圍墻,如果用此材料在一邊靠墻的地方圍成一塊矩形場地,中間用同樣的材料隔成三個面積相等的矩形(如下圖所示),則圍成的矩形的最大面積是(    )

A.100米2                                                          B.10 000米2

C.2 500米2                                                      D.6 250米2

查看答案和解析>>

科目:高中數學 來源: 題型:

如下圖所示,在矩形ABCD中,AB=a,BC=2a,在BC上取一點P,使得AB+BP=PD.求tan∠APD的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

在平面直角坐標系中,已知矩形ABCD的長為2,寬為1,AB、AD邊分別在x軸、y軸的正半軸上,A點與坐標原點重合(如下圖所示).將矩形折疊,使A點落在線段DC上.

(1)若折痕所在直線的斜率為k,試寫出折痕所在直線的方程;

(2)求折痕的長的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

如下圖所示,在矩形ABCD中,AB=5,AD=7.現在向該矩形內隨機投一點P,求∠APB>90°的概率為(  )

A.                                   B.π

C.π                                  D.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 91精品国产综合久久精品 | 五月伊人亚洲精品一区 | 成人欧美一区二区三区黑人 | 先锋影音在线观看 | 日韩成人高清 | 日韩毛片 | 99久久久久久| 欧美第一色 | 亚洲 欧美 精品 | 欧美精品99| 国产综合精品一区二区三区 | 国产综合久久 | 国产一区二区三区久久 | 亚洲精品视频免费 | 日韩在线精品强乱中文字幕 | 欧美福利一区二区三区 | 精品视频二区三区 | 久久久久久久一区 | 最新日韩av| 欧美日韩久久精品 | 欧美一区二区三区在线视频 | 一区二区三区视频在线免费观看 | 久久久精品观看 | 午夜剧场av | 欧美激情第1页 | www.久久久久 | 欧美日韩在线视频观看 | 国产视频一区在线 | 久久久久免费精品视频 | 成人一区二区三区在线观看 | 中文字幕在线视频免费播放 | 成人天堂资源www在线 | a欧美 | 国产一区在线视频 | 久久激情五月丁香伊人 | 91午夜精品一区二区三区 | 涩涩导航| 蜜桃久久av| www.国产精品 | 四虎av| 男人日女人网站 |