設定義在上的函數
,當
時
取得極大值
,且函數y=f(x)為奇函數.
(Ⅰ)求函數的表達式;
科目:高中數學 來源: 題型:
2 |
3 |
2 |
2 |
2 |
4 |
3 |
查看答案和解析>>
科目:高中數學 來源:2013-2014學年安徽省“皖西七校”高三年級聯合考試理科數學試卷(解析版) 題型:選擇題
設定義在上的函數
是最小正周期為
的偶函數,
是
的導函數,當
時;
;當
且
時,
,則函數
在區間
上的零點個數為( )
A.2 B.4 C.6 D.8
查看答案和解析>>
科目:高中數學 來源:2014屆江蘇省高二下學期期中考試數學文科試卷(解析版) 題型:解答題
設是定義在
上的函數,當
,且
時,有
.
(1)證明是奇函數;
(2)當時,
(a為實數). 則當
時,求
的解析式;
(3)在(2)的條件下,當時,試判斷
在
上的單調性,并證明你的結論.
查看答案和解析>>
科目:高中數學 來源:2012-2013學年廣東省高三上學期期中考試理科數學試卷(解析版) 題型:解答題
(14分)已知函數,其中常數
。
(1)當時,求函數
的單調遞增區間;
(2)當時,是否存在實數
,使得直線
恰為曲線
的切線?若存在,求出
的值;若不存在,說明理由;
(3)設定義在上的函數
的圖象在點
處的切線方程為
,當
時,若
在
內恒成立,則稱
為函數
的“類對稱點”。當
,試問
是否存在“類對稱點”?若存在,請至少求出一個“類對稱點”的橫坐標;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源:2011-2012學年湖北省高三上學期期末理科數學試卷 題型:解答題
已知函數其中常數
(1)當時,求函數
的單調遞增區間;
(2)當時,給出兩類直線:
與
,其中
為常數,判斷這兩類直線中是否存在
的切線,若存在,求出相應的
或
的值,若不存在,說明理由.
(3)設定義在上的函數
在點
處的切線方程為
,當
若
在
內恒成立,則稱
為函數
的“類對稱點”,當
時,試問
是否存在“類對稱點”,若存在,請至少求出一個“類對稱點”的橫坐標,若不存在,說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com