日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
與雙曲線
x2
3
-y2=1
共焦點,點A(3,
7
)
在橢圓C上.
(1)求橢圓C的方程;
(2)已知點Q(0,2),P為橢圓C上的動點,點M滿足:
QM
=
MP
,求動點M的軌跡方程.
(1)由已知得雙曲線焦點坐標為F1(-2,0),F2(2,0),
由橢圓的定義得|AF1|+|AF2|=2a,∴
25+7
+
1+7
=2a
,∴a=3
2

而c2=4,∴b2=a2-c2=18-4=14
∴所求橢圓方程為
x2
18
+
y2
14
=1

(2)設M(x,y),P(x0,y0),由
QM
=
MP
得(x,y-2)=(x0-x,y0-y)
x0=2x
y0=2y-2
而P(x0,y0)在橢圓
x2
18
+
y2
14
=1

(2x)2
18
+
(2y-2)2
14
=1

2x2
9
+
2(y-1)2
7
=1
為所求M的軌跡方程.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
1
2
,且經過點P(1,
3
2
)

(1)求橢圓C的方程;
(2)設F是橢圓C的左焦,判斷以PF為直徑的圓與以橢圓長軸為直徑的圓的位置關系,并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的短軸長為2
3
,右焦點F與拋物線y2=4x的焦點重合,O為坐標原點.
(1)求橢圓C的方程;
(2)設A、B是橢圓C上的不同兩點,點D(-4,0),且滿足
DA
DB
,若λ∈[
3
8
1
2
],求直線AB的斜率的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)經過點A(1,
3
2
),且離心率e=
3
2

(Ⅰ)求橢圓C的方程;
(Ⅱ)過點B(-1,0)能否作出直線l,使l與橢圓C交于M、N兩點,且以MN為直徑的圓經過坐標原點O.若存在,求出直線l的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•房山區二模)已知橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的長軸長是4,離心率為
1
2

(Ⅰ)求橢圓方程;
(Ⅱ)設過點P(0,-2)的直線l交橢圓于M,N兩點,且M,N不與橢圓的頂點重合,若以MN為直徑的圓過橢圓C的右頂點A,求直線l的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的短軸長為2,離心率為
2
2
,設過右焦點的直線l與橢圓C交于不同的兩點A,B,過A,B作直線x=2的垂線AP,BQ,垂足分別為P,Q.記λ=
AP+BQ
PQ
,若直線l的斜率k≥
3
,則λ的取值范圍為
 

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 亚洲最新视频在线观看 | 久久不卡日韩美女 | 国产痴汉av久久精品 | 久久久国产精品免费 | 青草视频在线播放 | 视频一区二区三 | 山外人精品 | 国产精品久久久久久久一区探花 | 色视频在线观看 | 国产美女高潮视频 | 欧美日韩福利 | 黑人精品 | 国产精品二区三区在线观看 | 国产嫩草91| 91男女视频 | 久久亚洲美女视频 | 欧美精品区 | 国产精品一区自拍 | 欧美日日 | 精品久久久久一区二区三区 | 欧美成人激情视频 | 欧美嘿咻 | 一区二区在线电影 | 国产a√ | 婷婷色在线 | 美女视频黄的免费 | 日韩一区二区三区免费视频 | 日韩欧美国产视频 | 在线国产一区二区 | 绯色av一区二区三区在线观看 | 欧美激情精品久久久久久 | 99久久精品毛片免费 | 久久婷婷视频 | 亚洲欧洲精品成人久久奇米网 | 中文字幕国产 | 欧美性福| 蜜桃视频麻豆女神沈芯语免费观看 | 国产成人免费 | 日韩精品在线一区二区 | 精品久久网| 天天操天天舔天天爽 |