(本題滿(mǎn)分16分)
已知數(shù)列的前n項(xiàng)和為
,數(shù)列
是公比為2的等比數(shù)列.
(Ⅰ)若,求
;
(Ⅱ)探究數(shù)列成等比數(shù)列的充要條件,并證明你的結(jié)論;
(Ⅲ)設(shè)
(Ⅰ)
(Ⅱ)略
(Ⅲ)
【解析】
解:(Ⅰ)…………3分
(Ⅱ)充要條件為 …………5分
由條件可得
證明:(1)充分性:當(dāng)時(shí),
, 而
,故數(shù)列
成等比數(shù)列
(2)必要性:由數(shù)列成等比數(shù)列,故
,解得
…………9分
(Ⅲ)當(dāng)時(shí),
;當(dāng)
時(shí),
當(dāng)為偶數(shù)時(shí),
恒成立,故
當(dāng)為奇數(shù)時(shí),
且
恒成立
由得
,由
恒成立
恒成立
故恒成立,所以
因,故
,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052305390467182678/SYS201205230540560000776725_DA.files/image023.png"> 所以
綜合得:…………16分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
a1+2a2+3a3+…+nan |
1+2+3+…+n |
n(n+1)(2n+1) |
6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本題滿(mǎn)分16分)本題共有2個(gè)小題,第1小題滿(mǎn)分8分,第2小題滿(mǎn)分8分.
已知函數(shù)(
,
、
是常數(shù),且
),對(duì)定義域內(nèi)任意
(
、
且
),恒有
成立.
(1)求函數(shù)的解析式,并寫(xiě)出函數(shù)的定義域;
(2)求的取值范圍,使得
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本題滿(mǎn)分16分)已知數(shù)列的前
項(xiàng)和為
,且
.?dāng)?shù)列
中,
,
.(1)求數(shù)列
的通項(xiàng)公式;(2)若存在常數(shù)
使數(shù)列
是等比數(shù)列,求數(shù)列
的通項(xiàng)公式;(3)求證:①
;②
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:江蘇省私立無(wú)錫光華學(xué)校2009—2010學(xué)年高二第二學(xué)期期末考試 題型:解答題
本題滿(mǎn)分16分)已知圓內(nèi)接四邊形ABCD的邊長(zhǎng)分別為AB = 2,BC = 6,CD = DA = 4;求四邊形ABCD的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010年上海市徐匯區(qū)高三第二次模擬考試數(shù)學(xué)卷(文) 題型:解答題
(本題滿(mǎn)分16分;第(1)小題5分,第(2)小題5分,第三小題6分)
已知函數(shù)
(1)判斷并證明在
上的單調(diào)性;
(2)若存在,使
,則稱(chēng)
為函數(shù)
的不動(dòng)點(diǎn),現(xiàn)已知該函數(shù)有且僅有一個(gè)不動(dòng)點(diǎn),求
的值;
(3)若在
上恒成立 , 求
的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com