【題目】如圖,已知拋物線:
,過焦點
斜率大于零的直線
交拋物線于
、
兩點,且與其準線交于點
.
(1)若線段的長為
,求直線
的方程;
(2)在上是否存在點
,使得對任意直線
,直線
,
,
的斜率始終成等差數列,若存在求點
的坐標;若不存在,請說明理由.
科目:高中數學 來源: 題型:
【題目】某大學生在開學季準備銷售一種文具盒進行試創業,在一個開學季內,每售出1盒該產品獲利潤50元,未售出的產品,每盒虧損30元.根據歷史資料,得到開學季市場需求量的頻率分布直方圖,如圖所示.該同學為這個開學季購進了160盒該產品,以(單位:盒,
)表示這個開學季內的市場需求量,
(單位:元)表示這個開學季內經銷該產品的利潤.
(I)根據直方圖估計這個開學季內市場需求量的眾數和中位數;
(II)將表示為
的函數;
(III)根據直方圖估計利潤不少于4800元的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,設橢圓的中心為原點,長軸在
軸上,上頂點為
,左、右焦點分別為
,線段
的中點分別為
,且
是面積為
的直角三角形.
(1)求該橢圓的離心率和標準方程;
(2)過作直線交橢圓于
兩點,使
,求
的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某廠生產產品的年固定成本為250萬元,每生產
千件需另投入成本
萬元,當年產量不足80千件時
(萬元);當年產量不小于80千件時
(萬元),每千件產品的售價為50萬元,該廠生產的產品能全部售完.
(1)寫出年利潤萬元關于
(千件)的函數關系;
(2)當年產量為多少千件時該廠當年的利潤最大?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓:
的離心率為
,以原點
為圓心,橢圓
的長半軸為半徑的圓與直線
相切.
(1)求橢圓的標準方程;
(2)已知點,
為動直線
與橢圓
的兩個交點,問:在
軸上是否存在點
,使
為定值?若存在,試求出點
的坐標和定值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,O為坐標原點,點F為拋物線C1:的焦點,且拋物線C1上點P處的切線與圓C2:
相切于點Q.
(Ⅰ)當直線PQ的方程為時,求 拋物線C1的方程;
(Ⅱ)當正數P變化時,記S1 ,S2分別為△FPQ,△FOQ的面積,求的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的焦距為2,左、右頂點分別為
,
是橢圓上一點,記直線
的斜率為
,且有
.
(1)求橢圓的方程;
(2)若直線與橢圓
交于
兩點,以
為直徑的圓經過原點,且線段
的垂直平分線在
軸上的截距為
,求直線
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某化工廠近期要生產一批化工試劑,經市場調查得知,生產這批試劑廠家的生產成本有以下三個部分:①生產1單位試劑需要原料費50元;②支付所有職工的工資總額由7500元的基本工資和每生產1單位試劑補貼所有職工20元組成;③后續保養的平均費用是每單位元(試劑的總產量為
單位,
).
(1)把生產每單位試劑的成本表示為的函數關系
,并求
的最小值;
(2)如果產品全部賣出,據測算銷售額(元)關于產量
(單位)的函數關系為
,試問:當產量為多少時生產這批試劑的利潤最高?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知圓
及點
,
.
(1)若直線平行于
,與圓
相交于
,
兩點,
,求直線
的方程;
(2)在圓上是否存在點
,使得
?若存在,求點
的個數;若不存在,說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com