(1)求列數{an}和{bn}的通項公式.
(2)是否存在k∈N*,使ak-bk∈(0,)?若存在,求出k;若不存在,請說明理由.
解:(1)由已知a2-a1=-2,a3-a2=-1,d=-1-(-2)=1,?
∴an+1-an=(a2-a1)+(n-1)×1=n-3. ?
∴an=a1+(a2-a1)+(a3-a2)+…+(an-an-1)?
=6+(-2)+(-1)+0+1+2+…+(n-4)?
=. ?
由已知b1-2=4,b2-2=2,即q==
,?
∴bn-2=(b1-2)·()n-1=4·(
)n-1=8·(
)n. ?
∴bn=2+8·()n. ?
(2)設f(k)=ak-bk=k2-
k-8·(
)k+7.?
當k≥4時, k2-
k是k的增函數;-8·(
)k也是k的增函數.?
∵f(4)= ,∴k≥4時,f(k)≥
. ?
∵f(1)=f(2)=f(3)=0,∴不存在k,使f(k)∈(0,).
科目:高中數學 來源: 題型:
查看答案和解析>>
科目:高中數學 來源:2011屆湖北省天門市高三模擬考試(二)理科數學 題型:單選題
設數列{an}和{bn}的通項公式為an=和bn=
(n∈N*),它們的前n項和依次為An和Bn,則
=
A.![]() | B.![]() | C.![]() | D.![]() |
查看答案和解析>>
科目:高中數學 來源:2010-2011學年湖北省天門市高三模擬考試(二)理科數學 題型:選擇題
設數列{an}和{bn}的通項公式為an=和bn=
(n∈N*),它們的前n項和依次為An和Bn,則
=
A. B.
C.
D.
查看答案和解析>>
科目:高中數學 來源:不詳 題型:解答題
查看答案和解析>>
科目:高中數學 來源:2011年湖北省天門市高考數學模擬試卷1(理科)(解析版) 題型:選擇題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com