【題目】已知函數有如下性質:如果常數
,那么該函數在
上是減函數,在
上是增函數.
(1)已知,利用上述性質,求函數
的單調區間和值域;
(2)對于(1)中的函數和函數
,若對任意
,總存在
,使得
成立,求實數
的值.
【答案】(1)減區間為,增區間為
,值域
;(2)
.
【解析】
試題分析:(1)化簡,設
,運用形式,即可求得函數的單調區間及值域;(2)求得
的值域,由題意得
的值域是
值域的子集,得到不等式組,即可求解實數
的取值范圍.
試題解析:(1),................2分
設,
則.............4分
由已知性質得,當,即
時,
單調遞減;
所以減區間為;
當,即
時,
單調遞增;
所以增區間為;.................6分
由,
得的值域為
........................8分
(2)為減函數,
故,...................10分
由題意,的值域是
的值域的子集,.............11分
∴....................13分
∴......................14分
科目:高中數學 來源: 題型:
【題目】定義在上的函數
,如果滿足:對任意
,存在常數
,都有
成立,則稱
是
上的有界函數,其中
稱為函數
的上界.已知函數
.
(1)當時,求函數
在
上的值域,并判斷函數
在
上是否為有界函數,請說明理由;
(2)若函數在
上是以4為上界的有界函數,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】用反證法證明“三角形中至少有兩個銳角”,下列假設正確的是( )
A. 三角形中至多有兩個銳角 B. 三角形中至多只有一個銳角
C. 三角形中三個角都是銳角 D. 三角形中沒有一個角是銳角
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】甲、乙、丙、丁四個物體同時從某一點出發向同一個方向運動,其路程關于時間
的函數關系式分別為
,
,
,
,有以下結論:
①當時,甲走在最前面;
②當時,乙走在最前面;
③當時,丁走在最前面,當
時,丁走在最后面;
④丙不可能走在最前面,也不可能走在最后面;
⑤如果它們一直運動下去,最終走在最前面的是甲.
其中,正確結論的序號為 (把正確結論的序號都填上,多填或少填均不得分)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知某運動員每次投籃命中的概率都為40%.現采用隨機模擬的方法估計該運動員三次投籃恰有兩次命中的概率:先由計算器算出0到9之間取整數值的隨機數,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三個隨機數為一組,代表三次投籃的結果.經隨機模擬產生了20組隨機數:
907 ,966 ,191,925 ,271 ,932 ,812 ,458 ,569 ,683 ,451 ,257 ,393 ,027 ,556 ,488 ,730 ,113 ,533 ,989
據此估計,該運動員三次投籃恰有兩次命中的概率為
A.0.35 B.0.25 C.0.20 D.0.15
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列關于算法的敘述中正確的是( )
A. —個算法必須能解決一類問題 B. 求解某個問題的算法是唯一的
C. 算法不能重復使用 D. 算法的過程可以是無限的
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列四個命題:
①方程若有一個正實根,一個負實根,則
;
②函數是偶函數,但不是奇函數;
③函數的值域是
,則函數
的值域為
;
④一條曲線和直線
的公共點個數是
,則
的值不可能是1.
其中正確的有 (寫出所有正確的命題的序號).
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com