(本題滿分16分)
已知圓,點
,直線
.
⑴求與圓相切,且與直線
垂直的直線方程;
⑵在直線上(
為坐標原點),存在定點
(不同于點
),滿足:對于圓
上任一點
,都有
為一常數(shù),試求所有滿足條件的點
的坐標.
(1)直線方程為
(2)存在點對于圓
上任一點
,都有
為常數(shù)
。
【解析】解:⑴設(shè)所求直線方程為,即
,
直線與圓相切,∴
,得
,
∴所求直線方程為
-----------5分
⑵方法1:假設(shè)存在這樣的點,
當為圓
與
軸左交點
時,
;
當為圓
與
軸右交點
時,
,
依題意,,解得,
(舍去),或
。 -----------------8分
下面證明 點對于圓
上任一點
,都有
為一常數(shù)。
設(shè),則
,
∴,
從而為常數(shù)。
-------------15分
方法2:假設(shè)存在這樣的點,使得
為常數(shù)
,則
,
∴,將
代入得,
,即
對
恒成立, ----------------8分
∴,解得
或
(舍去),
所以存在點對于圓
上任一點
,都有
為常數(shù)
。 ------------15分
科目:高中數(shù)學 來源: 題型:
a1+2a2+3a3+…+nan |
1+2+3+…+n |
n(n+1)(2n+1) |
6 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(本題滿分16分)本題共有2個小題,第1小題滿分8分,第2小題滿分8分.
已知函數(shù)(
,
、
是常數(shù),且
),對定義域內(nèi)任意
(
、
且
),恒有
成立.
(1)求函數(shù)的解析式,并寫出函數(shù)的定義域;
(2)求的取值范圍,使得
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(本題滿分16分)已知數(shù)列的前
項和為
,且
.數(shù)列
中,
,
.(1)求數(shù)列
的通項公式;(2)若存在常數(shù)
使數(shù)列
是等比數(shù)列,求數(shù)列
的通項公式;(3)求證:①
;②
.
查看答案和解析>>
科目:高中數(shù)學 來源:江蘇省私立無錫光華學校2009—2010學年高二第二學期期末考試 題型:解答題
本題滿分16分)已知圓內(nèi)接四邊形ABCD的邊長分別為AB = 2,BC = 6,CD = DA = 4;求四邊形ABCD的面積.
查看答案和解析>>
科目:高中數(shù)學 來源:2010年上海市徐匯區(qū)高三第二次模擬考試數(shù)學卷(文) 題型:解答題
(本題滿分16分;第(1)小題5分,第(2)小題5分,第三小題6分)
已知函數(shù)
(1)判斷并證明在
上的單調(diào)性;
(2)若存在,使
,則稱
為函數(shù)
的不動點,現(xiàn)已知該函數(shù)有且僅有一個不動點,求
的值;
(3)若在
上恒成立 , 求
的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com