【題目】某牛奶廠要將一批牛奶用汽車從所在城市甲運至城市乙,已知從城市甲到城市乙只有兩條公路,且運費由廠商承擔.若廠商恰能在約定日期(×月×日)將牛奶送到,則城市乙的銷售商一次性支付給牛奶廠20萬元;若在約定日期前送到,每提前一天銷售商將多支付給牛奶廠1萬元;若在約定日期后送到,每遲到一天銷售商將少支付給牛奶廠1萬元.為保證牛奶新鮮度,汽車只能在約定日期的前兩天出發,且只能選擇其中的一條公路運送牛奶,已知下表內的信息:
統計信息 | 在不堵車的情況下到達城市乙所需時間(天) | 在堵車的情況下到達城市乙所需時間(天) | 堵車的概率 | 運費(萬元) |
公路1 | 2 | 3 | 1.6 | |
公路2 | 1 | 4 | 0.8 |
(1)記汽車選擇公路1運送牛奶時牛奶廠獲得的毛收入為(單位:萬元),求
的分布列和數學期望
;
(2)如果你是牛奶廠的決策者,你選擇哪條公路運送牛奶有可能讓牛奶廠獲得的毛收入更多?
(注:毛收入=銷售商支付給牛奶廠的費用-運費)
【答案】(1);(2)選擇公路2運送牛奶有可能讓牛奶廠獲得的毛收入更多
【解析】
試題(1)求隨機變量的分布列的主要步驟:一是明確隨機變量的取值,并確定隨機變量服從何種概率分布;二是求每一個隨機變量取值的概率,三是列成表格;(2)求出分布列后注意運用分布列的兩條性質檢驗所求的分布列是否正確;(3)求解離散隨機變量分布列和方差,首先要理解問題的關鍵,其次要準確無誤的找出隨機變量的所有可能值,計算出相對應的概率,寫成隨機變量的分布列,正確運用均值、方差公式進行計算.
試題解析:(1)若汽車走公路1.
不堵車時牛奶廠獲得的毛收入ξ=20-1.6=18.4(萬元);
堵車時牛奶廠獲得的毛收入ξ=20-1.6-1=17.4(萬元).
∴汽車走公路1時牛奶廠獲得的毛收入ξ的分布列為
ξ | 18.4 | 17.4 |
P |
E(ξ)=18.4×+17.4×
=18.3(萬元).
(2)設汽車走公路2時牛奶廠獲得的毛收入為η,則
不堵車時牛奶廠獲得的毛收入η=20-0.8+1=20.2(萬元);
堵車時牛奶廠獲得的毛收入η=20-0.8-2=17.2(萬元).
∴汽車走公路2時牛奶廠獲得的毛收入η的分布列為
η | 20.2 | 17.2 |
P |
E(η)=20.2×+17.2×
=18.7(萬元).
∵E(ξ)<E(η),
∴選擇公路2運送牛奶有可能讓牛奶廠獲得的毛收入更多.
科目:高中數學 來源: 題型:
【題目】已知拋物線的焦點為
,
,
是拋物線上關于
軸對稱的兩點,點
是拋物線準線
與
軸的交點,
是面積為4的直角三角形.
(1)求拋物線的方程;
(2)若為拋物線上異于原點的任意一點,過
作
的垂線交準線
于點
,則直線
與拋物線是何種位置關系?請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知一個口袋有m個白球,n個黑球(m,n
,n
2),這些球除顏色外全部相同。現將口袋中的球隨機的逐個取出,并放入如圖所示的編號為1,2,3,……,m+n的抽屜內,其中第k次取球放入編號為k的抽屜(k=1,2,3,……,m+n).
(1)試求編號為2的抽屜內放的是黑球的概率p;
(2)隨機變量x表示最后一個取出的黑球所在抽屜編號的倒數,E(x)是x的數學期望,證明
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】記是定義在
上且滿足如下條件的函數
組成的集合:
①對任意的,都有
;
②存在常數,使得對任意的
、
,都有
.
(1)設函數,
,判斷函數
是否屬于
?并說明理由;
(2)已知函數,求證:方程
的解至多一個;
(3)設函數,
,且
,試求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(1)閱讀以下案例,利用此案例的想法化簡.
案例:考察恒等式左右兩邊
的系數.
因為右邊,
所以,右邊的系數為
,
而左邊的系數為
,
所以=
.
(2)求證:.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】“回文數”是指從左到右與從右到左讀都一樣的正整數,如22,121,3553等.顯然2位“回文數”共9個:11,22,33,…,99.現從9個不同2位“回文數”中任取1個乘以4,其結果記為X;從9個不同2位“回文數”中任取2個相加,其結果記為Y.
(1)求X為“回文數”的概率;
(2)設隨機變量表示X,Y兩數中“回文數”的個數,求
的概率分布和數學期望
.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com