日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
點M(m,4)m>0為拋物線x2=2py(p>0)上一點,F為其焦點,已知|FM|=5,
(1)求m與p的值;
(2)以M點為切點作拋物線的切線,交y軸與點N,求△FMN的面積.
(1)∵點M(m,4)m>0為拋物線x2=2py(p>0)上一點,F為其焦點,已知|FM|=5,
∴拋物線定義可知,|FM|=
p
2
+4=5

∴p=2,
∴拋物線的方程為x2=4y,
又∵M(m,4)在拋物線上,
∴m2=4×4,
∴m=4,
故p=2,m=4;
(2)由(1)可知,M(4,4),
由題意可知,切線的斜率k必定存在,
∴設過M點的切線方程為,y-4=k(x-4),
聯立方程組可得,
x2=4y
y-4=k(x-4)

消去y可得,x2-4kx+16k-16=0,
∵直線為拋物線的切線,則直線與拋物線只有一個交點,
∴x2-4kx+16k-16=0只有一個根,
∴△=16k2-64(k-1)=0,
∴k=2,
∴切線方程為y=2x-4,
∴切線與y軸的交點為N(0,-4),且拋物線的焦點為F(0,1),
S△FMN=
1
2
|FN|•m=
1
2
×5×4=10

故△FMN的面積為10.
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:單選題

曲線y=x3-2x+1在點(1,2)處的切線方程是(  )
A.y=x+1B.y=-x+1C.y=2x-2D.y=-2x+2

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數f(x)=ax2-(4a+2)x+4lnx,其中a≥0.
(1)若a=0,求曲線y=f(x)在點(1,f(1))處的切線方程;
(2)討論函數f(x)的單調性.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

曲線y=sinx在x=
π
2
處的切線方程是(  )
A.y=0B.y=x+1C.y=xD.y=1

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數y=x3-3x2
(1)求函數的極小值;
(2)求函數的遞增區間.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數f(x)=x3-x2-x.
(Ⅰ)求函數f(x)在點(2,2)處的切線方程;
(Ⅱ)求函數f(x)的極大值和極小值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數f(x)=x2-2x.
(Ⅰ)指出函數f(x)值域和單調減區間;
(Ⅱ)求函數f(x)在(0,0)點處的切線方程;
(Ⅲ)求f(x-1)>0的解集.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數f(x)=
1
3
x3-
3
2
x2+2x+5

(Ⅰ)求f(x)的單調區間;
(Ⅱ)若曲線y=f(x)與y=2x+m有三個不同的交點,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數f(x)=ax+blnx.
(1)當x=2時f(x)取得極小值2-2ln2,求a,b的值;
(2)當b=-1時,若在區間(0,e]上至少存在一點x0,使得f(x0)<0成立,求實數a的取值范圍.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 亚洲一区二区三区四区的 | 日韩 国产 在线 | 青青草网 | 日本在线播放 | 欧美亚洲国产一区 | 中文一区二区 | 久久综合狠狠综合久久综合88 | 国产超碰在线 | 亚洲一区二区三区视频 | 天天色天天色 | 久久久国产精品 | 久久精品亚洲精品国产欧美kt∨ | 伊人爱爱网| 中国一级大黄大黄大色毛片 | 久久久精品网 | 日韩在线不卡 | 91在线精品一区二区 | 中文字幕在线观看资源 | 欧日韩不卡在线视频 | 国产一区二区三区免费在线观看 | 日韩大片免费看 | 高清有码 | 欧美成人在线免费观看 | 亚洲 欧美 综合 | 91视频一区二区三区 | youjizz国产 | 国产一区二区三区精品久久久 | 久久精品天堂 | 久久久久综合 | 亚洲精品一区二区三区 | 国产精品视频一区二区噜噜 | 日韩电影免费观 | 国产精品久久久久久久9999 | 欧美激情综合五月色丁香小说 | 免费a级作爱片免费观看欧洲 | 日韩一区二区福利 | 国产精品国产a | 国产黄色免费网站 | 99热福利| 国产成人精品一区二区三区四区 | 一区二区三区四区在线 |